Loading...
HomeMy WebLinkAboutTransportation Packet April 2021 Note: Anyone wishing to speak at any Transportation Commission meeting is encouraged to do so. If you wish to speak, please rise and, after you have been recognized by the Chair, give your name and complete address for the record. You will then be allowed to speak. Please note the public testimony may be limited by the Chair. AASSHHLLAANNDD TTRRAANNSSPPOORRTTAATTIIOONN CCOOMMMMIISSSSIIOONN AApprriill 1155,, 22002211 AGENDA I. CALL TO ORDER: 6:00 PM, Meeting held virtually via Zoom II. ANNOUNCEMENTS III. CONSENT AGENDA A. Approval of Minutes: March 18, 2021 IV. PUBLIC FORUM (6:05-6:20) A. Public Forum-if you wish to speak during public forum please register with Shannon.burruss@ashland.or.us by 10am April 14th. B. If you wish to provide public comment or discuss an agenda item please contact Shannon.burruss@ashland.or.us by April 14th by 10am to register to participate. Written comments can also be submitted in the same time frame. C. If you are interested in watching the meeting via Zoom please utilize the following link: V. CRASH REPORT (6:20-6:30) VI. NEW BUSINESS A. None VII. OLD BUSINESS A. 20 Is Plenty Program (6:30-7:30, action required, discuss programmatic development of the 20 Is Plenty Program) B. Evacuation Time Estimate Draft Report (7:30-8:00, no action required, review and discuss draft report) VIII. TASK LIST (If time allows) A. Discuss current action item list IX. FOLLOW UP ITEMS A. Bike Map Development X. INFORMATIONAL ITEMS (If time allows) A. Normal Avenue Traffic Calming XI. COMMISSION OPEN DISCUSSION (If time allows) XII. FUTURE AGENDA TOPICS A. TSP Update B. Residential Parking Program C. Street User Fee/Gas Tax (budget process) D. Crosswalk Policy XIII. ADJOURNMENT: 8:00 PM Next Meeting Date: May 20, 2021 Meeting In compliance with the Americans with Disabilities Act, if you need special assistance to participate in this meeting, please contact the Public Works Office at 488-5587 (TTY phone number 1 800 735 2900). Notification 48 hours prior to the meeting will enable the City to make reasonable arrangements to ensure accessibility to the meeting (28 CFR 35.102-35.104 ADA Title I). Transportation Commission Contact List as of February 2021 Name Title Telephone Mailing Address Email Address Expiration of Term Mark Brouillard Commissioner 206-661-7085 159 Helman St mtbrouillard@msn.com 4/30/2023 Joe Graf Commissioner 541-488-8429 1160 Fern St. jlgtrans15@gmail.com 4/30/2021 Corinne Vièville Commissioner 541-488-9300 or 541-944-9600 805 Glendale Ave. corinne@mind.net 4/30/2022 Derrick Claypool-Barnes Commissioner 503-482-9271 1361 Quincy St #6F dorkforest@gmail.com 4/30/2021 Linda Peterson Adams Commissioner 541-554-1544 642 Oak St gardengriotashland@gmail.com 4/30/2022 Katharine Danner Commissioner 541-482-2302 PO Box 628 ksdashland@gmail.com 4/30/2022 Bruce Borgerson Commissioner 541-488-5542 209 Sleepy Hollow Dr wave@mind.net 4/30/2023 Non-Voting Ex Officio Membership Scott Fleury Director, Public Works 541-488-5587 20 E. Main Street scott.fleury@ashland.or.us Paula Hyatt Council Liaison 20 E. Main Street Paula.Hyatt@council.ashland.or.us Brandon Goldman Planning Department 541- 488-5305 20 E. Main Street goldmanb@ashland.or.us Steve MacLennan Police Department 541- 552-2433 20 E. Main Street maclenns@ashland.or.us Vacant SOU Liaison 541-552-8328 1250 Siskiyou Blvd Dan Dorrell, PE ODOT 541- 774-6354 100 Antelope Rd WC 97503 Dan.w.dorrell@odot.state.or.us Edem Gómez RVTD 541-608-2411 3200 Crater Lake Av 97504 egomez@rvtd.org Jenna Stanke ODOT 541- 774-5925 100 Antelope Rd WC 97503 Jenna.MARMON@odot.state.or.us David Wolske Airport Commission david@davidwolske.com Vacant Ashland Parks Vacant Ashland Schools Staff Support Scott Fleury Public Works Director 541-488-5347 20 E. Main Street Scott.fleury@ashland.or.us Karl Johnson Associate Engineer 541-552-2415 20 E. Main Street johnsonk@ashland.or.us Shannon Burrus Permit Technician 541-552-2428 20 E. Main Street Shannon.burrus@ashland.or.us ASHLAND TRANSPORTATION COMMISSION MINUTES March 18th, 2021 Transportation Commission March 18th, 2021 Page 1 of 2 These minutes are pending approval by this Commission CALL TO ORDER: 6:00pm Commissioners Present: Mark Brouillard, Joe Graf, Corinne Vièville, Linda Peterson Adams, Katharine Danner, Bruce Borgerson, Derrick Claypool-Barnes Commissioners Not Present- None Council Liaison Present: Paula Hyatt Staff Present: Scott Fleury Guests Present: Mojie Takallou ANNOUNCEMENTS – None CONSENT AGENDA Approval of Minutes 02.18.21 Vièville motions to approve minutes, Borgerson seconds. All ayes, motion carries. PUBLIC FORUM -None ACCIDENT REPORT: Officer MacLennan not present. Borgerson discusses the similarity between an accident he’d had in 2009 to the first accident report listed. Commission discusses current downtown three lane configuration, in relation to accidents. NEW BUSINESS A. Local Road and Street Safety for non-engineers presentation by Mojie Takallou- Takallou presents slide show information contained presentation (see attached). Commission and Staff discuss traffic safety goals, stating the primary goal is zero traffic fatalities and disabling injuries. Takallou leads conversation with Commission by asking questions contained in presentation. Old Business- A. Capital Improvement Program- Peterson Adams introduces Fleury for his rundown of his report to City Counsel. Links to full document and staff’s background report can be found in meeting agenda. Fleury relays that he presented the recommendations from the Commission to Council and lays out next steps and budget process timelines. Graff asks about the TSP update in relation to Downtown, Fleury recalls that when the project was stopped it was anticipated to be readdressed after two years, so it is his opinion that the Downtown Project is separate from the TSP, but he does state that smaller related projects could be added to the TSP in order to create a backbone that the project can build from once it starts back up. Commission intends to interject themselves as much as possible in the Downtown Revitalization Project in order to stress the importance of the project in the Commission’s multi modal transportation goals. Commission would like to revisit the conversation on future agenda topics to formalize the will of the Commission. TASK LIST A. Discuss current action item list FOLLOW UP ITEMS A. Bike Map Development- Discussion only on what is occurring with the former Zagster bikes, Fleury relays that a project is in the works, Claypool-Barnes offers to act as Transportation Commission liaison to the ASHLAND TRANSPORTATION COMMISSION MINUTES March 18th, 2021 Transportation Commission March 18th, 2021 Page 2 of 2 These minutes are pending approval by this Commission project and requests contact information from Fleury. INFORMATIONAL ITEMS- A. Normal Avenue Traffic Calming Application B. Tolman Creek Intersection Advance Plans (ODOT) COMMISSION OPEN DISCUSSION- FUTURE AGENDA TOPICS A. TSP Update B. 20 Is Plenty Program C. Residential Parking Program D. Street User Fee/Gas Tax (budget process) E. Crosswalk Policy ADJOURNMENT: Respectfully submitted, Shannon Burruss Permit Technician-Engineering and Public Works **Full Video Available by Request** Prepared by Mojie Takallou, Ph.D, P.E. Department of Civil Engineering University of Portland Prepared by Mojie Takallou, Ph.D, P.E. Department of Civil Engineering University of Portland Sponsored by U.S. Department of Transportation National Highway Traffic Safety Administration & Transportation Safety Division of the Oregon Department of Transportation Sponsored by U.S. Department of Transportation National Highway Traffic Safety Administration & Transportation Safety Division of the Oregon Department of Transportation ROAD AND STREET SAFETY FOR NON-ENGINEERS National Highway Traffic Safety Administration: Occupants and Nonoccupants Killed in Traffic Crashes, 2018-2019 2018 Oregon Motor Vehicle Traffic Crashes Quick Facts (based on data available as of 07/08/2020) 2018 Oregon Motor Vehicle Traffic Crashes Quick Facts (based on data available as of 07/08/2020) 2018 Oregon Motor Vehicle Traffic Crashes Quick Facts (based on data available as of 07/08/2020) Jurisdictional Data for Jackson County, 2018 Jackson County Population Est. 219,200 Fatalities 32 Alcohol Involved Fatalities 10 Fatal & Injury Crashes 1,575 F&I Crashes / 1,000 Population 7.19 Nighttime F&I Crashes 238 Jurisdictional Data for Jackson County Cities, 2018 (>10k) Ashland Central Point Medford Population Est. 20,815 17,895 80,375 Fatalities --5 Alcohol Involved Fatalities --3 Fatal & Injury Crashes 79 55 810 F&I Crashes / 1,000 Population 3.80 3.07 10.08 Nighttime F&I Crashes 11 5 81 Objectives Discuss the problems, challenges of Roads and Streets safety for the 21st century Identify the types, causes, and costs of traffic crashes Review the importance of the 4 E’s of Roads and Streets safety Identify best practical and low-cost improvements for making roads safer To get everyone thinking about highway safety and its place in their lives CHALLENGES Limited… •Budgets •Staffing •Time •Crash data •Traffic and road information •Understanding or awareness of safety issues •Training In addition to… •Lack of coordination between agencies •Competing priorities •Politics •Staff turnover •Empowerment CRASH or ACCIDENT?CRASH or ACCIDENT? Use the term Crash in place of accident ACCIDENT implies “no fault” when CRASHES are actually caused because someone used poor driving strategy & tactics Road Environment Factors (28%) Vehicle Factors (8%) Human Factors (95%) 4$4% % 24%67%4% 4% TYPICAL REPORTED CRASH CAUSES 32. 25.7 4.4 26.2 14.4 11.6 6.6 4.7 Motor Vehicle Crashes in the US, 2018 Population 327,167,434 Persons Killed 36,560 Persons Injured 2,710,000 Property Damage Crashes 4,807,000 Total Motor Vehicle Crashes 6,734,000 Economic Cost of Motor Vehicle Crashes $ 445.5 billion Source: USDOT, NHTSA,NSC Lives Saved (2017) Seat Belts 14,955 Frontal Airbags 2,790 Motorcycle Helmets 1,872 Minimum Drinking age laws 538 Child Restraints 325 Motor Vehicle Crashes Quick Facts USA (2018) Pedestrian Fatalities 6,283 Motorcyclist Fatalities 4,985 Pedalcyclist Fatalities 857 Alcohol-Impaired Fatalities 10,511 Speed related Fatalities 9,378 Traffic Crashes From September 11th, 2001 to September 2020 Fatalities approx. 707,000 Injuries approx. 48,000,000 Number of Crashes approx. 113,500,000 Cost approx. $5.1 Trillion On 9-11, approximately 3,030 innocent people lost their lives. September 11 2001 to September 2020 707,000 Fatalities Portland to Sacramento = 580 miles Average Height = 5’ 3” September 11, 2001 to September 2020 48,000,000 Injuries Average Height = 5’ 3” Earth Circumference 24,901 miles 238,900 Miles Cost of Traffic Crashes Total Cost = $5,100,000,000,000 September 11, 2001 to September 2020 Oregon Traffic Crashes, 2018 502 Fatalities 79 Pedestrians Fatalities 9 Pedalcyclist Fatalities 85 Motorcyclist Fatalities Source: ODOT Oregon Summary of Traffic Fatalities, 2018 Source: Oregon Department of Transportation Number Percent Total Fatalities 502 Speed 146 29.00% Alcohol +Drug 142 28.30 % P.S. some fatalities have multiple contributing circumstances Distracted Driving Drowsy and Distracted Drivers Distracted by something inside or outside the vehicle Texting Using Cell phone Eating and drinking Talking to passengers Using a navigation system Adjusting a radio, CD player Drowsy or fatigued Concentrating on something other than driving What Are Your Agency’s Highway Safety Goals and Objectives? Our Goal Fatalities & Injuries What is a Beautiful Road? A Road with Fatalities & Injuries Strategic Planning Where are we now? Where do we want to be in the future? How do we get there? How do we measure our progress? The Four E’s of Traffic SafetyThe Four E’s of Traffic Safety ENGINEERING EDUCATION ENFORCEMENT EMERGENCY RESPONSE EngineeringEngineering Our Safety Emphasis Areas Young and Senior Drivers Speeding Drivers Impaired Drivers Pedestrian Safety Bicyclist Safety Motorcycle Safety Distracted and Aggressive Drivers Work zone Safety Engineering And Enforcement Engineering And Enforcement We Must Focus on Changing Drivers and Road User Behavior We Must Focus on Changing Drivers and Road User Behavior When is Enforcement Effective? The Six Week Concept Enforcement changes behavior for up to 6 weeks Behavior will return without additional enforcement Engineering and education needed for permanent change EducationEducation Emergency Medical Services (EMS) Emergency Medical Services (EMS) 2009 Manual on Uniform Traffic Control Devices Traffic Control Devices Signs Signals Pavement Markings Traffic Control Devices are used: Regulatory Warning Guide Multi-Way Stop Sign Stop Sign shall not be used as traffic Calming Must be based on Engineering Study Five or more reported Crashes in a 12- month period that are susceptible to correction by a multi-way stop sign The Minimum Vehicular volume entering the intersection total of both approaches(300 per hour for any 8 hours of an average day) Trees Traffic Calming ProgramTraffic Calming Program ObjectivesObjectives Improve neighborhood livability Enhance safety for residents and street users Support a multi-modal transportation system Roundabouts Safety Performance – Contributing Factors –Reduced speeds –Reduced decisions –Reduced conflict points –Reduced conflict severity Urban Single-Lane Roundabout Bend, OR Photo: Oregon DOT Safety Performance 90-100% reduction in fatalities 75% reduction in injuries 35% reduction in total crashes Very little reported pedestrian and bicycle crash experience Source: NCHRP Report 572: Roundabouts in the United States Cul-de-sacs The Concept of Preventive Maintenance Excellent Failed $1.00 for preventive maintenance here . . . Delays spending $4.00 to $5.00 on more extensive treatments here. Age Co n d i t i o n Pedestrian Safety, Speed Management and Bicycle Facility Design Pedestrian Fatalities (USA) 6,374 Pedestrian Fatalities in 2018 A Pedestrian was Killed Every 1.4 Hours 48% Involved Alcohol (Driver or Pedestrian) Pedestrian Fatalities Highest since 1990 Pedestrian Fatalities in Relation to Location (USA) 82% of Pedestrian Fatalities occur outside of Intersections Oregon Summary of Pedestrian Related Traffic Fatalities, 2018 Total Pedestrian Fatalities 79 Total Pedestrian Injuries 949 Percent of Total Oregon Fatalities 15.7% Source: ODOT Pedestrian Crash Type: Dart/Dash Pedestrian Crash Type - Multiple Threat/Trapped Pedestrian Crash Type - Walking Along Roadway In most cases, marked crosswalks are best used in combination with other treatments: Curb extensions Raised crossing islands Traffic signals Roadway narrowing Enhanced overhead lighting Traffic calming measures Think of the marked crosswalks as one option in a progression of design treatments Pedestrian DesignPedestrian Design shortens crossing distance What the pedestrian sees Textured brick complemented with stripes This area was recaptured from a 4th travel lane; the street took on a whole new life Designing for Pedestrian Safety – Road Diets Portland OR Shoulder Bikeway 5’ min. against curb or guardrail; 4’ min. open shoulder Neighborhood Speed Watch Program Speed display reader board Neighborhood speed watch Issuing warning letters Law Enforcement officers must focus on changing drivers behavior during the traffic stop WELCOME TO THE CITY OF ASHLAND WELCOME TO THE CITY OF MEDFORD The Handbook is available in electronic form online and can be downloaded at: www.up.edu/highwaysafety Thank you for being such a wonderful audience and for your commitment to traffic safety! For Additional Information, please contact Mojie Takallou, Ph.D., P.E. University of Portland Tel: 503-943-7437 Email: takallou@up.edu Website: www.up.edu/highwaysafety 1 Scott Fleury From:City of Ashland, Oregon <administration@ashland.or.us> Sent:Tuesday, April 06, 2021 10:51 PM To:Scott Fleury; Taina Glick Subject:Transportation Commission Contact Form Submitted [EXTERNAL SENDER] *** FORM FIELD DATA*** Full Name: Louise Shawkat Phone: Email: louise40208@gmail.com Subject: Idling Message: I would ;Ike the trans commission look into the feasibility of installing a no-idling sign in front of=f city hall- for obvious health reasons. Attachment 1 file: Attachment 2 file: Attachment 3 file: *** USER INFORMATION *** SubscriberID: -1 SubscriberUserName: SubscriberEmail: RemoteAddress: 66.241.70.76 RemoteHost: 66.241.70.76 RemoteUser: #* #* #* #* #*March 2021 Accidents Motor Vehicle (6) #*Bike/Ped Involved (0) Previous 2021 Accidents Motor Vehicle (22) #*Bike/Ped Involved (5) Traffic CrashesMarch 2021 NO. OF ACCIDENTS: Rep DATE TIME DAY LOCATION NO. VEH PED INV. BIKE INV.INJ. DUII Cited Police On Site PROP DAM. HIT/ RUN CITY VEH.CAUSE - DRIVER ERROR Rep 4 16:34 Thur Wightman near Lee St 3 N N NN N YYNNDv1 crashed into 2 parked vehicles within a block causing damage. Rep 6 21:20 Sat B Street 2 N N N U N Y Y Y N Vehicle was struck and damaged while parked, Wsitness described Dark SUV that struck parked vehicle Rep 6 21:21 Sat B Street Near N Pioneer St 2 N N N U N Y Y Y N Vehicle was struck and damaged while parked Rep 14 11:49 Sun Hersey @ Oak 2 N N N N Y Y U N N DV2 took wide left turn into intersection and hit V1. V1 Cited for improper left turn. Rep 16 15:00 Tue Fairview St 2 N N N N N Y Y N N D2 opened door into lane while V1 was passing. V1 hit door. Rep 24 12:01 Wed Wimer St near Chestnut St 1 N N P Y Y Y Y N N D1 missed the turn onto Chestnut and totaled car when hit curb MONTH: MARCH MOTOR VEHICLE CRASH SUMMARY G:\pub-wrks\eng\dept-admin\TRANSPORTATION COMMISSION\2021 Staff Memos\April 15, 2021\Packet\5. 20 Is Plenty Program (April 2021 Staff Report).doc Memo Date: April 8, 2021 From: Scott A. Fleury To: Transportation Commission RE: 20 Is Plenty-Program Development BACKGROUND: The Commission has previously discussed the 20 Is Plenty program report at the January 21, 2021 Meeting. The report and staff information are attached for reference (executive summary). As part of the Transportation Commission’s charge to recommend Capital Improvement Projects (CIP) for the Transportation Network to the Director of Public Works, the Commission recommended including some monies in the CIP to support a 20 Is Plenty Program. Staff has included $25k in each year of the proposed 2021-2023 Budget Biennium to support financial needs associated with traffic safety education and outreach, signage, markings, etc. for the program itself, if it moves forward through a defined process and the City Council approves an ordinance that lowers residential speed limits by 5mph as allowed by the ORS. If the program does not receive community support and subsequently Council support through ordinance approval, then no monies will be spent as part of the program itself. Primary to the Commission discussion on this item is now developing a programmatic process to move forward with project development, public engagement and Council interactions. Staff has included some background information regarding the City of Eugene’s Zero Vision program for reference as well. Staff has also attached a memo that outlines regulations associated with speed zones (ORS 810.180). There appears to be some misconception about the overall scope of the project intent. The 20 Is Plenty Program’s primary focus per the ORS is for residential roads within the City of Ashland. The arterials and collector roadway speed limits would not be altered (Hersey Street, North Main, East Main, Siskiyou Boulevard, Oak Street, & Ashland Street). Discussion Questions: 1. Next Steps a. Public outreach/input process i. Engage Ashland-website tool 1. Survey Information/Public Feedback/Questions 2. Develop Maps-visual breakdown b. Include in TSP update c. Standalone components d. Public Hearing-Transportation Commission e. Public Hearing-City Council i. Resolution - Vision Zero (Eugene) ii. Ordinance – Speed reduction ordinance 2. Pilot projects vs full scale implementation G:\pub-wrks\eng\dept-admin\TRANSPORTATION COMMISSION\2021 Staff Memos\April 15, 2021\Packet\5. 20 Is Plenty Program (April 2021 Staff Report).doc 3. Enforcement capabilities a. Police outreach 4. Implementation and associated education a. Process and materials 5. Monitoring parameters a. Monitor or not 6. Enhancements/changes CONCLUSION: Commission should discuss associated next steps/actions for the “20 is Plenty” program. Evidence Demonstrating the Efficiency, Safety and Economic Benefits of Reduced Maximum Speed Limits - In Ashland, Oregon Executive Summary Oregon state government gives cities some flexibility in setting maximum speed limits (Oregon Revised Statutes 810.180). Ashland could take advantage of the law and, at the same time, make our community a better place to live and visit. Reducing maximum speeds within Ashland will serve to: • Reduce the incidence and severity of motor vehicle collisions • Improve safety – especially for people walking and bicycling • Increase mode share of bicycling and walking • Reduce carbon emissions • Reduce consumption of gasoline and expenditures on transportation by Ashland households • Improve human health • Reduce vehicle miles of travel • Lower costs for road maintenance • Improve social equity • Increase the potential to attract remote workers (economic development) • Reduce neighborhood noise Only three of the above benefits can be monetized. But if Ashland were to make a commitment to lower maximum speed limits in a manner consistent with ORS 810.180 and enforce those speed limits adequately, it would stand to generate annual economic savings of more than $1 million. The estimated implementation cost is approximately $100,000. Benefits Summary Category / Source Estimated Annual Benefits Reduced incidence and severity of accidents $764,212 Fuel savings (arising from mode shift) $305,554 Carbon emissions reduction $133,758 TOTAL BENEFITS $1,203,524 The cost of changing speed limit signs, adding additional signage as required by Oregon law, and conducting related speed studies is estimated at $100,000, a one-time expense. Clearly, lower speed limits will slow the rate of travel. But the additional time that a slower maximum speed adds to a person’s travel time is measured in seconds. This is a small price to pay for saving lives, money, and the planet. Reduced Incidence and Severity of Accidents Slower speeds allow drivers more reaction time. Additionally, if a crash does happen at slower speeds, it is much less likely to result in serious injury or death. Traffic deaths do happen in Ashland. In fact, during the previous five years there have been two deaths. That is two too many. Ashland should ensure that there are zero deaths or serious injuries. Our community can achieve that outcome by lowering maximum speeds. People walking and bicycling are vulnerable road users. If hit by an automobile, they often suffer serious injury. In fact, 14 percent of accidents in the City involved a pedestrian or person riding a bicycle. Lower speeds will, as noted above, reduce the number of collisions, and also the severity of injury. Children and seniors suffer more serious injuries when struck by an automobile (especially when hit by an SUV or pickup truck). In the hilly parts of town, above Siskiyou Boulevard and N. Main, most streets lack sidewalks. This means that people walking, bicycling and driving share the same space. If we want Ashland’s transportation system to be safe for all ages and abilities (and all modes of travel), then lowering the speed limits will help achieve that outcome. Ashland Households Can Save Money with Lower Speeds Some members of our community either don’t drive or don’t own an automobile. Reducing speeds makes bicycling and walking more practical and safer. When people choose to walk or ride a bike rather than drive, they pocket the money that they would otherwise spend on gasoline and car maintenance. These savings add up. Reducing maximum speeds helps to make our community more equitable. It is estimated, with slower maximum speeds, that about five percent of existing travel using automobiles would, in the future, be made by people walking or riding a bicycle. The actual shift in mode may be higher or lower than the forecast. But it is known, based upon surveys in other communities, that roughly half of Ashland residents are “interested in bicycling but are concerned” for their safety. They are afraid to share the roadway with motor vehicles traveling at current speeds. Below is a typical distribution of attitudes toward bicycling. Most people who currently bicycle are probably either “strong & fearless” or “enthused and confident.” More people will choose to walk or bicycle if the City’s streets can be adjusted to make it safer for people to walk or bicycle. Saving the Planet – Reduced Carbon Emissions Did you know that every gallon of gasoline you consume produces 20 pounds of carbon dioxide? Incredible but true. Ashland could, with lower speeds, reduce its carbon dioxide emissions by 1,070 metric tons per year. These emissions reductions occur as a result of more people making the choice to bicycle or walk rather than drive, for some or all of their trips. That’s right, we can reduce the impact on the planet by making it safer and more practical for people to choose to walk or bicycle. It’s that simple. These reductions are equivalent to: • 836 or 12 percent of Ashland households, who heat water with natural gas, changing out their existing water heater to a heat pump water heater – at an approximate cost of $2,507,958 or, • 710 or 10 percent of Ashland households, who heat with natural gas, to convert their natural gas furnace to a heat pump – at an approximate cost of $4,260,053 Conclusion We recommend that the City Council: i. Direct the Public Works Department to pursue reducing maximum speeds within the City to the maximum extent allowed by Oregon Revised Statute 810.180, and ii. Request that the Southern Oregon legislative delegation ensure that Ashland is included among the jurisdictions which would be empowered, as Portland currently is, to set speed limits on roadways under the City’s jurisdiction pursuant to a reintroduced HB 4103 (2020 legislative number). To review the full report (45 pages) see: https://drive.google.com/file/d/1kmwcUB4CzoAceW4UMZZFu2JzkBVTYPEJ/view?usp=sharing G:\pub-wrks\eng\dept-admin\TRANSPORTATION COMMISSION\2021 Staff Memos\April 15, 2021\Packet\7. ORS 810.doc Memo Date: April 8, 2021 From: Scott A. Fleury To: Transportation Commission RE: ORS 810 BACKGROUND: 810.180 Designation of maximum speeds; rules. (1) As used in this section: (a) “Designated speed” means the speed that is designated by a road authority as the maximum permissible speed for a highway and that may be different from the statutory speed for the highway. (b) “Statutory speed” means the speed that is established as a speed limit under ORS 811.111, or is established as the speed the exceeding of which is prima facie evidence of violation of the basic speed rule under ORS 811.105. (2)(a) A designated speed established under this section is a speed limit if the highway for which the speed is designated is subject to a statutory speed limit under ORS 811.111 that is in addition to the speed limit established under ORS 811.111 (1)(b). (b) A speed greater than a designated speed established under this section is prima facie evidence of violation of the basic speed rule if the designated speed is established for a highway on which there is no speed limit other than the limit established under ORS 811.111 (1)(b). (3) The Department of Transportation may establish by rule designated speeds on any specified section of interstate highway if the department determines that speed limits established under ORS 811.111 (1) are greater or less than is reasonable or safe under the conditions that exist with respect to that section of the interstate highway. Designated speeds established under this subsection are subject to all of the following: (a) The department may not establish a designated speed under this subsection of more than: (A) Sixty-five miles per hour for vehicles described in ORS 811.111 (1)(b); and (B) Seventy miles per hour for all other vehicles. (b) If the department establishes designated speeds under this subsection that are greater than 65 miles per hour, the designated speed for vehicles described in ORS 811.111 (1)(b) must be at least five miles per hour lower than the designated speed for all other vehicles on the specified section of interstate highway. (c) The department may establish a designated speed under this subsection only if an engineering and traffic investigation indicates that the statutory speed for the interstate highway is greater or less than is reasonable or safe under conditions the department finds to exist. (d) A designated speed established under this subsection is effective when appropriate signs giving notice of the designated speed are posted on the section of interstate highway where the designated speed is imposed. (4)(a) The department may establish, pursuant to a process established by rule, a designated speed on a state highway outside of a city. The authority granted under this subsection includes, but is not limited to, the authority to establish different designated speeds for different kinds or G:\pub-wrks\eng\dept-admin\TRANSPORTATION COMMISSION\2021 Staff Memos\April 15, 2021\Packet\7. ORS 810.doc classes of vehicles as the department determines reasonable and safe. A designated speed established under this subsection for any kind or class of vehicles may not exceed the speed limit for the highway for that kind or class of vehicles as established in ORS 811.111 or, if there is no speed limit for the highway other than the limit established in ORS 811.111 (1)(b), may not exceed 55 miles per hour. (b) The department may establish a designated speed under this subsection only if an engineering and traffic investigation indicates that the statutory speed for the highway is greater or less than is reasonable or safe under conditions the department finds to exist. (c) A designated speed established under this subsection is effective when appropriate signs giving notice of the designated speed are posted on the portion of highway where the designated speed is imposed. (5) After a written request is received from a road authority for a highway other than a highway described in subsection (3) or (4) of this section, the department, pursuant to a process established by rule, may establish a designated speed for the highway. The authority granted under this subsection includes, but is not limited to, the authority to establish different designated speeds for different kinds or classes of vehicles as the department determines reasonable and safe. The authority granted under this subsection is subject to all of the following: (a) The written request from the road authority must state a recommended designated speed. (b) The department may establish a designated speed under this subsection only if an engineering and traffic investigation indicates that the statutory speed for the highway is greater or less than is reasonable or safe under conditions the department finds to exist. (c) The department may not make a final decision to establish a designated speed under this subsection without providing the affected road authorities with notice and opportunity for a hearing. (d) A road authority may file a written objection to a designated speed that is proposed by the department under this subsection and that affects the road authority. (e) A designated speed established under this subsection is effective when appropriate signs giving notice of the designated speed are posted on the portion of the highway where the designated speed is imposed. The expense of erecting any sign under this subsection shall be borne by the road authority having jurisdiction over the portion of the highway where the designated speed is imposed. (f) The department, pursuant to a process established by rule, may delegate its authority under this subsection with respect to highways that are low volume or unpaved to a city or county with jurisdiction over the highway. The department shall delegate authority under this paragraph only if it determines that the city or county will exercise the authority according to criteria adopted by the department. (6) The department may override the speed limit established for ocean shores under ORS 811.111 (1)(c) and establish a designated speed of less than 25 miles per hour on any specified section of ocean shore if the department determines that the speed limit established under ORS 811.111 (1)(c) is greater than is reasonable or safe under the conditions that exist with respect to that part of the ocean shore. The authority granted under this subsection is subject to all of the following: (a) The department may make the determination required under this subsection only on the basis of an investigation. (b) A designated speed established under this subsection is effective when posted upon appropriate fixed or variable signs on the portion of ocean shore where the designated speed is imposed. G:\pub-wrks\eng\dept-admin\TRANSPORTATION COMMISSION\2021 Staff Memos\April 15, 2021\Packet\7. ORS 810.doc (7) A road authority may adopt a designated speed to regulate the speed of vehicles in parks under the jurisdiction of the road authority. A road authority regulating the speed of vehicles under this subsection shall post and maintain signs at all park entrances to give notice of any designated speed. (8) A road authority may establish by ordinance or order a temporary designated speed for highways in its jurisdiction that is lower than the statutory speed. A temporary designated speed may be established under this subsection if, in the judgment of the road authority, the temporary designated speed is necessary to protect any portion of the highway from being unduly damaged, or to protect the safety of the public and workers when temporary conditions such as construction or maintenance activities constitute a danger. The following apply to the authority granted under this subsection: (a) Statutory speeds may be overridden by a temporary designated speed only: (A) For a specific period of time for all vehicles; or (B) For a specified period of time for a specific kind or class of vehicle that is causing identified damage to highways. (b) This subsection may not be used to establish a permanent designated speed. (c) The authority granted by this subsection may be exercised only if the ordinance or order that imposes the temporary designated speed: (A) Specifies the hazard, damage or other condition requiring the temporary designated speed; and (B) Is effective only for a specified time that corresponds to the hazard, damage or other condition specified. (d) A temporary designated speed imposed under this subsection must be imposed by a proper written ordinance or order. A sign giving notice of the temporary designated speed must be posted at each end of the portion of highway where the temporary designated speed is imposed and at such other places on the highway as may be necessary to inform the public. The temporary designated speed shall be effective when signs giving notice of the temporary designated speed are posted. (9) A road authority may establish an emergency speed on any highway under the jurisdiction of the road authority that is different from the existing speed on the highway. The authority granted under this subsection is subject to all of the following: (a) A speed established under this subsection is effective when appropriate signs giving notice thereof are posted upon the highway or portion of highway where the emergency speed is imposed. All signs posted under this subsection must comply with ORS 810.200. (b) The expense of posting any sign under this subsection shall be borne by the road authority having jurisdiction over the highway or portion of highway where the emergency speed is imposed. (c) A speed established under this subsection may be effective for not more than 120 days. (10) A road authority may establish by ordinance a designated speed for a highway under the jurisdiction of the road authority that is five miles per hour lower than the statutory speed. The following apply to the authority granted under this subsection: (a) The highway is located in a residence district. (b) The statutory speed may be overridden by a designated speed only if: (A) The road authority determines that the highway has an average volume of fewer than 2,000 motor vehicles per day, more than 85 percent of which are traveling less than 30 miles per hour; and (B) There is a traffic control device on the highway that indicates the presence of pedestrians or bicyclists. G:\pub-wrks\eng\dept-admin\TRANSPORTATION COMMISSION\2021 Staff Memos\April 15, 2021\Packet\7. ORS 810.doc (c) The road authority shall post a sign giving notice of the designated speed at each end of the portion of highway where the designated speed is imposed and at such other places on the highway as may be necessary to inform the public. The designated speed shall be effective when signs giving notice of the designated speed are posted. (11) A city may establish by ordinance a designated speed for a highway under the jurisdiction of the city that is five miles per hour lower than the statutory speed. The following apply to the authority granted under this subsection: (a) The highway is located in a residence district. (b) The highway is not an arterial highway. (c) The city shall post a sign giving notice of the designated speed at each end of the portion of highway where the designated speed is imposed and at such other places on the highway as may be necessary to inform the public. The designated speed shall be effective when signs giving notice of the designated speed are posted. (12) Notwithstanding ORS 801.430, as used in subsection (11) of this section, “residence district” includes territory not comprising a business district that is contiguous to a highway and has access to dwellings provided by alleys. [1983 c.338 §162; 1985 c.16 §51; 1987 c.887 §8; 1989 c.592 §3; 1991 c.728 §3; 1993 c.742 §118; 1995 c.79 §371; 1997 c.249 §227; 1999 c.59 §240; 2003 c.819 §2; 2005 c.77 §1; 2005 c.507 §1; 2011 c.384 §1; 2017 c.291 §1; 2019 c.515 §1] CONCLUSION: No action required as this is an informational update to Commission. EUGENE CITY COUNCIL AGENDA ITEM SUMMARY Action: Ordinance Lowering Speeds on Residential Streets Meeting Date: June 22, 2020 Agenda Item Number: X Department: Public Works Staff Contact: Chris Henry www.eugene-or.gov Contact Telephone Number: 541-682-4959 ISSUE STATEMENT The Eugene City Council will consider action on a proposed ordinance to lower the speed limit to 20 miles per hour on local streets in residential areas. BACKGROUND Senate Bill 558 passed in the 2019 legislative session allowing cities to designate speeds on non- arterial residential streets five miles per hour lower than the statutory speed limit. Effectively, this legislative change allows the City Council to adopt an ordinance to designate a speed limit of 20 miles per hour on residential non-arterial streets. Previously, only the City of Portland had authority through legislation to designate speed in this context. The passing of SB 558 extended authority to all cities. The Eugene Vision Zero Action Plan, adopted by administrative order in 2019, identified: speed as a factor in crashes causing injuries or death; slowing vehicle speeds as a strategy to reduce harm to people in a crash; and taking actions to reduce speed limits on the Vision Zero High Crash Network as well as supporting legislation to allow local control to designate speed limits. Speed is a significant determinant of outcomes in crashes. When speeds are lower, people are less likely to be injured or killed. As speed in a crash increases, the likelihood of serious injury or death is much greater. Research shows that in crashes at 20 miles per hour, there is a 10 percent likelihood of serious injury or death; at 30 miles per hour, the likelihood of serious injury or death increases to 40 percent; and at 40 miles per hour, the likelihood of serious injury or death increases to 70 percent. Funding to implement a change designating 20 miles per hour speed limits on local residential streets has been identified. A strategy for implementation would include changing existing speed limit signs on local residential streets. The sign changes would include a community outreach campaign to remind neighbors that “20 IS PLENTY” or similar messaging as used in Portland, Oregon and other cities around the world. Designating lower speeds on residential collector streets would be considered on a case by case basis through evaluation of the street context and presented to Council at a future date as needed. Efforts to reduce transportation related fatalities or serious injuries are consistent with a triple bottom line approach to decision-making in the community. Reducing harm to people supports a healthy community. Making streets safer for people who walk, use a mobility device, ride a bicycle or the bus makes those options more comfortable and attractive compared to driving a car and is consistent with climate recovery goals. Reducing crashes and the financial costs of harm to people or property also supports a healthy economy. PREVIOUS COUNCIL DIRECTION On June 15, 2020, the Eugene City Council held a public hearing where they heard comment on an ordinance to designate lower speed limits on residential streets. https://eugene.ompnetwork.org/sessions/148248?embedInPoint=2156&embedOutPoint=8677& shareMethod=link On March 11, 2020, the Eugene City Council held a work session where they were briefed on options to adopt an ordinance to designate lower speed limits on residential streets. https://eugene.ompnetwork.org/sessions/130343?embedInPoint=196980&embedOutPoint=473 7&shareMethod=link On November 18, 2015, the Eugene City Council adopted Resolution 5143, “A resolution setting as official policy the Vision Zero goal that no loss of life or serious injury on our transportation system is acceptable.” https://www.eugene-or.gov/DocumentCenter/View/27858 Following this policy direction, staff provided active legislative support through letter submission and public hearing testimony (by then City Engineer Matt Rodrigues) to pass SB 558 allowing cities to designate lower speeds on residential streets. The concept for this bill was one of the top five priorities for the 2019 legislative session for the League of Oregon Cities – Transportation Policy Committee on which, City of Eugene Transportation Planning Manager Rob Inerfeld, serves and Councilor Evans was the chair. COUNCIL OPTIONS A. Adopt the ordinance as proposed. B. Adopt the ordinance with modifications as determined by the City Council. C. Take no action on the ordinance. CITY MANAGER’S RECOMMENDATION The City Manager recommends adopting the ordinance as proposed. SUGGESTED MOTION I move to adopt the Ordinance Reducing The Speed Limit To 20 Miles Per Hour On Local Streets In Residential Areas. ATTACHMENTS A. AN ORDINANCE REDUCING THE SPEED LIMIT TO 20 MILES PER HOUR ON LOCAL STREETS IN RESIDENTIAL AREAS FOR MORE INFORMATION Staff Contact: Chris Henry, Traffic Operations Manager Telephone: 541-682-4959 Staff E-Mail: CHenry@eugene-or.gov COUNCIL ORDINANCE NO. 20636 AN ORDINANCE REDUCING THE SPEED LIMIT TO 20 MILES PER HOUR ON LOCAL STREETS IN RESIDENTIAL AREAS. ADOPTED: July 13, 2020 SIGNED: July 20, 2020 PASSED: 8:0 REJECTED: OPPOSED: EFFECTIVE: August 20, 2020 Ordinance -- Page 1 of 2 ORDINANCE NO. 20636 AN ORDINANCE REDUCING THE SPEED LIMIT TO 20 MILES PER HOUR ON LOCAL STREETS IN RESIDENTIAL AREAS. The City Council of the City of Eugene finds as follows: A. Through its passage of Resolution No. 5143 on November 18, 2015, the City Council set as official City policy Vision Zero’s goal of zero fatalities or serious injuries on our transportation system and directed the City Manager to initiate the formation of a Vision Zero Task Force. B. On March 29, 2019, the City Manager issued Administrative Order No. 58-19-04 adopting Eugene’s Vision Zero Action Plan as a guide for action to reach the goal of zero deaths and life-changing injuries on Eugene's transportation system by 2035. The Vision Zero Action Plan includes the following Actions: • SD-9: Work with ODOT to lower speed limits on the Vision Zero High Crash Network, accompany speed limit changes with street design changes and enforcement, when possible. • SD-10: Support legislation to allow local City control to designate speed limits. C. The Eugene 2035 Transportation System Plan, adopted by City Council on June 26, 2017, includes the following Goal and System Wide Policy: • Goal 4: Address the transportation needs and safety of all travelers, including people of all ages, abilities, races, ethnicities, and incomes. Through transportation investments, respond to the needs of system users, be context sensitive, and distribute the benefits and impacts of transportation decisions fairly throughout the City. • System-Wide Policy 2: Consider safety first when making transportation decisions. Strive for zero transportation-related fatalities and severe injuries by reducing the number and severity of crashes through design, operations, maintenance, education, and enforcement. In furtherance of the City Council’s adopted Vision Zero goal (Resolution No. 5143), prioritize safety improvements for people who walk, bike and use mobility devices because no loss of life or serious injury on our streets is acceptable. D. Research shows that a person struck by a driver at 25 miles per hour (“MPH”) is nearly twice as likely to result in death than a crash at 20 MPH (AAA Foundation for Traffic Safety, Impact Speed and a Pedestrian’s Risk of Severe Injury or Death, 2011). E. The 2019 Oregon Legislature passed SB 558, amending ORS 810.180 to authorize cities to designate by ordinance a speed that is five MPH lower than statutory speed on non-arterial streets in “residence districts” under their jurisdiction. 2018–2023 Vision Zero Action Plan one traffic death is too many THIS PAGE INTENTIONALLY LEFT BLANK ii EUGENE VISION ZERO iii EUGENE VISION ZERO Acknowledgments Lane Council of Governments Staff Bill Clingman City of Eugene Project Team Staff Rob Inerfeld Matt Rodrigues Larisa Varela Toole Design Parents of Traffic Victims Karen Creighton Marina Hajek Susan Minor Oregon Department of Transportation, Transportation Safety Division Chris Ellison 4J Eugene School District Carmel Snyder Tilford (Ray) Snyder* AARP Oregon Marina Hajek Advocate for Safe Streets Pat McGillivray Bethel School District Rob Zako Michele O’Leary* Better Eugene-Springfield Transportation (BEST) Kelsey Moore City of Eugene Active Transportation Committee Joe Zaludek City of Eugene, Fire and Emergency Medical Services Department Greg Gill City of Eugene Municipal Court Chief Pete Kerns Sean McGann* City of Eugene Police Department Kurt Corey Mark Schoening* City of Eugene Public Works Brian Johnson Lane County Public Health David Reesor Lane County Public Works Eugene Organ Erycka Organ* Lane Independent Living Alliance Carl Yeh AJ Jackson* Lane Transit District (LTD) Bill Johnston Oregon Department of Transportation (ODOT) Rick Hamilton Oregon Department of State Police Matt Roberts University of Oregon Steve Wildish Randy Hledik* Mary Lou Wilson* Wildish Companies * Served as Task Force alternate Sarah Mazze 4J Eugene School District Bob Beals Bethel School District JoAnna Kamppi City of Eugene, Fire and Emergency Management Services James Hadley City of Eugene Police Department Shawn Marsh City of Eugene Police Department Sean McGann City of Eugene Police Department Matt Rodrigues City of Eugene Public Works Lindsay Selser City of Eugene Public Works Larisa Varela City of Eugene Public Works Steve Dobrinich Lane Council of Governments Ellen Currier Lane Council of Governments Becky Taylor Lane County Kelly Hoell Lane Transit District Jake McCallum Lane Transit District Theresa Brand Point2Point Solutions at Lane Transit District Nicole Charlson Oregon Department of Transportation Cheri Kimball Oregon Driver Training Institute James Miller Jim Cole Ethan Lodwig PeaceHealth Task Force Members Technical Advisory Committee Members Better Eugene-Springfield Transportation (BEST) iv EUGENE VISION ZERO WE PLEDGE, as the Vision Zero Leadership Committee, to incorporate the Vision Zero Action Plan tenets, strategies, actions and values into everything our departments do. We commit to work together in pursuit of the goal of zero traffic-related fatalities and life-changing injuries in the city of Eugene by 2035. Chief Chris Skinner Eugene Police Department Chief Joseph Zaludek Fire & Emergency Management Department Sarah Medary, Executive Director Public Works Department Jon Ruiz, City Manager City of Eugene v EUGENE VISION ZERO Table of Contents Executive Summary Why Vision Zero, Why Now? vi Where to Focus vi Taking Action vii In Remembrance viii Why is Vision Zero Needed? 1 Why Now? 2 What is Vision Zero? 3 Vision Zero Eugene 5 Vision Statement 6 Guiding Tenets 6 This plan is Eugene’s. 7 Causes of deaths and life-changing injuries 8 Crash Causes 9 Strategies to address deaths and life-changing injuries 16 Strategies 17 Locations of deaths and life-changing injuries 20 Where We Need to Focus 21 The Vision Zero High Crash Network 21 Communities of Concern 29 Actions to prevent deaths and life-changing injuries 30 Taking Action 31 Street Design 32 Impairment 34 Dangerous Behaviors 35 Engagement and Accountability 37 Measuring Our Progress 39 Appendix 40 vi EUGENE VISION ZERO EXECUTIVE SUMMARY Vision Zero is an approach to transportation safety that aims to eliminate deaths and life- changing injuries caused by traffic crashes. In November of 2015, the Eugene City Council adopted as City policy the Vision Zero goal of zero fatalities and serious injuries on Eugene’s transportation system as a result of community advocacy efforts. The resolution adopting Vision Zero directed the City Manager to initiate formation of a Vision Zero Task Force to develop an Action Plan. This Eugene Vision Zero Action Plan is the result of that direction. This Action Plan lays out an ambitious set of two- and five-year actions to reach the goal of zero deaths and life-changing injuries on Eugene’s transportation system by 2035. These actions will be undertaken by numerous City departments (Public Works, Police, Fire & Emergency Medical Services), in cooperation with other agency partners such as school districts and Lane Transit District, and community partners like the University of Oregon and PeaceHealth. Vision Zero will also need the ongoing support and commitment of all of Eugene’s residents who use our streets to walk, bike, roll, take transit and drive. Achieving Vision Zero requires a true culture change—from one where lives lost or severely harmed is an accepted daily occurrence to one where deaths and life-changing injuries are unacceptable outcomes of simply using our streets. Why Vision Zero, Why Now? Eugene needs Vision Zero now because people continue to die and suffer life-changing injuries on our streets. From 2007 to 2015, 60 people were killed and 364 experienced life- changing injuries as the result of crashes. These numbers do not reflect the full toll on our community; each victim’s family, friends, coworkers and acquaintances are also impacted by the loss of someone they knew and loved. Nearly half of these fatal and life-changing injury crashes affect people walking, biking or riding a motorcycle, even though these modes make up less than 20 percent of trips in Eugene. Speed is a critical factor in determining the severity of a crash, and people traveling by these modes are more vulnerable to greater harm from automobiles, even at relatively low speeds. Even when speeding is not indicated to be a cause of a crash, the normal driving speed of a street can contribute to a fatal or life-changing injury. This is also true for people in crashes only involving cars. Vision Zero aims to improve safety for everyone who uses our streets. Where to Focus The development of this Plan included an analysis of crash data from the last nine years to objectively identify problem streets and intersections. We found that only 9% of streets account for 70% of fatal and life-changing injury crashes in Eugene. These streets comprise the Vision Zero High Crash Network and are the focus of many actions in our plan. vii EUGENE VISION ZERO Taking Action The City of Eugene has been working for years to make its streets safer for all who use them. This plan builds on that work, as well as a regional and county safety plan and a statewide plan from the Oregon Department of Transportation. To reduce crashes that result in deaths and life-changing injuries, the Task Force, Technical Advisory Committee and staff identified actions to be undertaken that will change policies, practices and programs and further shift the culture around transportation safety. Development and implementation of these actions are guided by three tenets to ensure they adhere to the Vision Zero commitment and important Eugene values: equity, data and accountability. The actions center around the following four areas that impact the likelihood and severity of crashes: street design, impairment, dangerous behaviors and engagement and accountability. While this is our five-year plan to reach Vision Zero, we know this effort will take longer. In five years, we will review our actions and progress to update this plan to ensure we are continuing on the path to zero deaths and life-changing injuries. We urge you to join us in this commitment to making our city’s streets safer for all who travel in Eugene. Street Design Actions in this area will impact how Eugene streets are built and re-designed in order to improve safety for all people who use our streets. Impairment Actions in this area aim to decrease the number of people driving, biking and walking under the influence of alcohol, marijuana and illicit drugs. Dangerous Behaviors Actions in this area upgrade the enforcement of existing laws, call for additional, more equitable enforcement, and aim to change travel behavior through messaging. Engagement and Accountability Actions in this area will keep the Vision Zero effort on the forefront of City staff and the community, and will enhance community engagement in making Eugene’s streets safer. viii EUGENE VISION ZERO In Remembrance This plan is dedicated to those who have lost loved ones and who have had their lives significantly impacted by traffic crashes. Your losses motivate us to strive toward a safer Eugene. 1 EUGENE VISION ZERO The City of Eugene has adopted the bold vision of eliminating traffic deaths and life-changing injuries on the City’s transportation system. This path toward Vision Zero was adopted by the Eugene City Council in November 2015, after working with community stakeholders. This is our community’s story, and our plan to reach zero. Why is Vision Zero Needed? The City of Eugene is consistently ranked as one of America’s best places to live. As a small city with an engaged and inclusive community, thriving universities and surrounding natural beauty, we agree. But even though Eugene is highly regarded in some ways, we lose too many members of our community to traffic crashes on our streets. From 2007 to 2015, 60 people were killed in traffic crashes in Eugene, and another 364 people sustained life-changing injuries. On average, someone is killed or experiences life changing injuries every eight days while traveling on our streets. Traffic crashes are so routine that we are all too often numb to the toll they take—despite the tragic effect on our families, community and economy. Not one of us would find it acceptable for a family member, friend, or colleague to be injured or killed. And the good news is—we don’t have to accept this as fate. Crashes are not accidents, they are preventable—with the right actions and commitment. Moreover, those crashes that may still occur do not need to result in deaths or life-changing injuries because Vision Zero is committed to reducing the severity of crashes so that crashes don’t result in death or life changing injuries. Everyone has the right to safely travel on our streets no matter where they are going and how they travel. That is why the City of Eugene has chosen zero as our goal. By committing to eliminate traffic deaths and life-changing injuries by 2035 through a Vision Zero program, we will create a safer and more vibrant city for decades to come. Eugene Vision Zero Task Force. 2 EUGENE VISION ZERO Why Now? Safety has been on the City of Eugene’s radar for years, but despite everyday efforts to create safer streets that work well for all users, investments in transit, and advances in technology, we still experience an unacceptable number of traffic deaths and life-changing injuries. Vision Zero is the next step to effectively reduce deaths and life-changing injuries on our streets. While over 90 percent of crashes involve only drivers and their passengers, people walking, biking and riding motorcycles are disproportionately likely to be seriously injured or killed on our streets—an unacceptable inequality for a city that prides itself on healthy, active, accessible transportation options. Drivers and their passengers are also in danger. Over 57 percent of all fatal or life-changing injury crashes involve drivers and their passengers. These data suggest that a bold intervention and strong commitment from City leaders and partners—including residents—will be required to eliminate deaths and life changing injuries. The Eugene Vision Zero Action Plan establishes a roadmap for the City to eliminate traffic deaths and life-changing injuries on its streets. It signals a shift in transportation engineering and planning practice to prioritize safety of our residents over the convenience of traveling quickly through our city. These changes won’t always be easy, but we are committed to working together to achieve them, and motivated by our determination to create a safe Eugene for all of our residents and visitors. Crashes Share 92% 4%2%2% Fatal and Life-Changing Injury Crashes Share 57%13% 16% 14% City of Eugene, 2007-2015 crash data Commuter Mode Share 74% 8% 8% 4% 6%Work from home 3 EUGENE VISION ZERO What is Vision Zero? Vision Zero is a transportation safety philosophy that was developed in Sweden in the late 1990s to eliminate traffic deaths and serious injuries in the transportation system. Sweden already had a significantly lower crash rate than the United States. Even with a low crash rate, Sweden was still able to work beyond the low hanging fruit and reduce traffic fatalities by half over 20 years. Sweden is now one of the safest places to travel in the world. By contrast, traffic fatalities in the U.S. have dropped by only 30 percent over the same time period. If we would have adopted Vision Zero at the same time as Sweden, over 15,000 lives could have been saved in the US in 2015 alone. Vision Zero calls on us to think differently about traffic safety, and to reach beyond traditional silos to work together for a truly worthy outcome: the elimination of traffic deaths and life- changing injuries on our streets. Central to Vision Zero is the idea that people should not be killed or experience life-changing injuries as a consequence of simply using our streets. Vision Zero recognizes that we all make mistakes, and that the transportation system should be designed to minimize the impacts of those errors. When crashes do occur, they should not result in death or life-changing injuries. In the past five years, over 30 U.S. cities, including Eugene, have adopted Vision Zero goals. Many have developed detailed action plans to eliminate traffic deaths. While each city has adapted the program to its own unique needs and situation, the Vision Zero approach is helping ensure that improving traffic safety is focused on the most powerful tools, like wholesale speed reduction. Addressing issues of equity has also emerged as a critical component of Vision Zero initiatives. 200 150 100 50 0 19 9 5 19 9 6 19 9 7 19 9 8 19 9 9 20 0 0 20 0 1 20 0 2 20 0 3 20 0 4 20 0 5 20 0 6 20 0 7 20 0 8 20 0 9 20 1 0 20 1 1 20 1 2 20 1 3 20 1 4 20 1 5 Traffic Safety in the United States and Sweden, 1995-2015 Fa t a l i t i e s p e r 1 0 0 , 0 0 0 p o p u l a t i o n USA - Actual Sweden If the USA had followed Sweden 4 EUGENE VISION ZERO A Vision Zero City meets the following minimum standards: - - Visi - Key are engaged. Vision Zero City Portland San Francisco San JoseFremont San Diego Boston Somerville New York City Washington, D.C.Montgomery County Denver Chicago Sacramento Updated January 2018 Fort Lauderdale San Antonio Los Angeles Columbia Anchorage Eugene Bellevue San Luis Obispo Monterey Bethlehem Philadelphia Alexandria Richmond Cambridge SantaBarbara Durham Macon Minneapolis Boulder Orlando Vision Zero Cities Updated January 2018 Source: http://visionzeronetwork.org/resources/vision-zero-cities Eugene is one of the first small American cities to develop an action plan. We look forward to helping blaze a path toward safer transportation systems for cities of our size. The federal government and most states, including the Oregon Department of Transportation (ODOT), have also established a goal of eliminating traffic deaths. ODOT’s Transportation Safety Action Plan shares our 2035 goal year for eliminating deaths and life-changing injuries on the transportation system. Regionally, Lane County Government, Lane Transit District and the Central Lane Metropolitan Planning Organization are pursuing similar goals, providing additional support for this initiative. 5 EUGENE VISION ZERO Václav Hajek, age 10 Václav was a wonderful and kind human being, and was just a child when he was killed. He blessed this world with his smile. Václav loved the arts, outdoors, spending time with family and riding his bicycle. He wanted to be an artist like his mom. Václav was killed at age 10 when he was hit by a speeding teenage driver while walking across the street with his bike. Fundamental Principles of a Meaningful Vision Zero Commitment These principles are core to successful Vision Zero efforts: 1. Traffic deaths and severe injuries are acknowledged to be preventable. 2. Human life and health are prioritized within all aspects of transportation systems. 3. Acknowledgment that human error is inevitable, and transportation systems should be forgiving. 4. Safety work should focus on systems-level changes above influencing individual behavior. 5. Speed is recognized and prioritized as the fundamental factor in crash severity. (Source: Vision Zero Network) Vision Zero Eugene Vision Zero Eugene is truly a collaborative undertaking. The time is ripe for this type of systemic change to happen in our community. As Vision Zero gained prominence as a new way of thinking about transportation safety, our community leaders and professionals united around the need for change in Eugene. This resulted in the City Council’s adoption of a Vision Zero resolution in November of 2015, placing Eugene in the company of other Vision Zero cities worldwide. Since that time, the City has worked closely with community advocates, policymakers, and transportation, public health, and law enforcement professionals to create this Action Plan. The ultimate goal of the Plan is to stem the loss of life and opportunity that occurs via traffic crashes on our streets. Our Vision Zero Task Force and Technical Advisory Committee, composed of City leadership, agency staff and community stakeholders, have studied the factors contributing to traffic crashes in Eugene and debated appropriate, bold actions to address them. We are proud to present our proposed strategies and actions to you in this plan, and look forward to working with you, our community, to achieve this vision. 6 EUGENE VISION ZERO Vision Statement Our community values the safety of all people who use our multimodal transportation system and will take equitable, data-driven actions to eliminate deaths and life-changing injuries by 2035. Guiding Tenets These tenets have helped shape the actions included in this plan and will continue to guide their implementation. In order to be effective, every agency, community partner and resident involved in making Vision Zero a reality should check their actions against these tenets by asking is this program or this project equitable, data-driven and accountable? Equitable Eugene strives to be a community where every person regardless of their identity is safe, valued and welcome. A person’s identity encompasses multiple aspects, including, but not limited to: age, race, ethnicity, gender, national origin, religion, disability, sexual orientation, socio-economic and housing status. This plan seeks to make Eugene’s streets safer for all people who travel on them. Data-Driven The actions in this plan were determined through a process of data analysis and community conversation that took place at community events over the spring, summer, and fall of 2017. Starting with data allows us to address the issues we know have caused crashes in the past, and the locations with the worst crash histories. This plan calls for increasing the amount of data and agency coordination to ensure even more detailed and pertinent analysis can drive Vision Zero actions in the future. Accountable This plan belongs to the people of Eugene. We recognize that traffic crashes can impact anyone in our community, and we want to be held accountable by our residents for addressing that serious problem. To do this, the plan must first be accountable to itself which is why we call for tracking the effectiveness of actions and making changes where and when needed. When that process is in place, we can then report to our residents on our successes and adjustments. Progress will be communicated in an annual report. Life-Changing Injuries: Crashes that result in major injuries change the life of the victim and their family and friends. Serious injuries are defined as those that prevent the victim from going about their daily life as before. This can mean lost time at work, dependence on a family member for care, large medical bills and other long-term impacts. Though not fatal, these crashes have long-lasting effects. 7 EUGENE VISION ZERO This Plan is Eugene’s The Vision Zero Resolution was adopted by Eugene City Council after members of the community raised awareness of the toll that traffic crashes can take on members of our community, their families and friends. They asked the City Council to strongly articulate that no traffic deaths or serious injuries are acceptable in our city. The Vision Zero Resolution specifically directed the City Manager to convene a Task Force to develop a Vision Zero Action Plan. This plan was guided by a Task Force of city leaders and community partners who care deeply about the safety of Eugene residents on our streets. The Task Force met throughout the development of this plan, offering thoughtful, critical feedback about its direction from the perspective of advocates, implementers and those whose lives have been changed by traffic crashes. Achieving Vision Zero will take the whole community to be conscious of their individual actions and the influence we have on each other. The Vision Zero Action Plan was collaboratively developed by members of the Eugene community. Opportunities for engagement included: • Six Vision Zero Task Force Meetings • Five Vision Zero Technical Advisory Committee Meetings • Vision Zero webpages, https://www.eugene-or.gov/VisionZero, that included Task Force meeting materials and the draft Vision Zero Action Plan • A public open house for review and comment on the draft Action Plan • A focus group aimed to elevate Communities of Concern • Presentations at Neighborhood Association Meetings • Tabling at community events • Eugene City Council presentation Through these public involvement activities, the City provided community members with a variety of forums to share their concerns and identify priorities for transportation safety. Moving forward, this plan will remain Eugene’s. Eugenians will shape what Vision Zero looks like in their community. Residents and the traffic safety behavior they model for others will continue to play a critical role in reaching Vision Zero. In order to reach Vision Zero, we must all lead by example by being respectful and considerate users of our transportation system. The City of Eugene will partner with other agencies and our community to reach Vision Zero. You are important to helping Eugene end traffic deaths and life-changing injuries on our streets. You can help by taking the Vision Zero pledge. I pledge to: drive and bike sober.  slow down and drive the speed limit.  yield the right of way.  focus on the street and not drive, walk or bike distracted.  share the responsibility of keeping myself, my family, my friends and my community members safe on our streets. Thank you for making Eugene’s streets safe for everybody! Remember, it’s a CRASH, not an “accident.” Traffic deaths ARE preventable. Fir s t na m e __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ La s t nam e __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___ _ Em a i l __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ During the summer of 2017, hundreds of community members took the Vision Zero pledge. 8 EUGENE VISION ZERO CAUSES of deaths and life-changing injuries 9 EUGENE VISION ZERO Crash Causes An extensive data analysis of the City’s crashes from 2007-2015 revealed the following major contributors to life-changing and fatal traffic crashes in Eugene: • Street Design • Dangerous Behaviors • Impairment The Vision Zero Action Plan lays out a series of actions intended to address each of these contributing factors, leading to a safer Eugene for all. Street Design A key aspect of Vision Zero is to design streets that are forgiving. While we each have a responsibility to behave safely on our streets, mistakes happen—and the result cannot be a life-changing injury or death while moving in and around our city. Unfortunately, our streets are not always designed with this principle in mind. This is particularly true for our arterials, on which an astonishing 65 percent of fatal and life- changing injury crashes occur in Eugene. Many arterials are built for carrying large amounts of fast-moving automobile traffic. Most have sidewalks, but infrequent safe crossings for people walking. Some also have transit service, which increases the need for crossing the street when walking to the bus. And some have bicycle facilities, but they may not be the safest design for the speed and volume of auto traffic on that street. However, it is not just people biking and walking who are disproportionately at risk when traveling along these streets. Despite being built for motor vehicle throughput, still 64 percent of life-changing and fatal motorist and motorcyclist crashes occur on our arterials. We cannot escape the conclusion that our arterials must be designed differently to save lives in Eugene. Crashes vs. Fatalities and Injuries Data we report here all relate to fatal and life-changing injury crashes. A crash is the occurrence when parties collide on the transportation system. Fatalities and injuries are the outcomes of crashes. When a fatality occurs, we consider that a fatal crash, even if there are also injuries to other people involved. We count the number of crashes rather than outcomes for two reasons: 1) outcomes would often over-count motor vehicle crashes where multiple people are killed or injured versus pedestrian and bicycle crashes where the person walking or biking is most often the only injury or fatality, and 2) the number of passengers in a car is somewhat random and it can skew counts as well. 10 EUGENE VISION ZERO minor collector collector major collector minor arterial major arterial local Roadway Classification Legend Major Arterial Minor Arterial Collector Local 65% of fatal and life-changing injury crashes occur on Eugene’s arterial streets 11 EUGENE VISION ZERO The designated speed of our streets also needs to be addressed. Crash data state that 12 percent of fatal and serious injury crashes are related to speeding. Yet legal speeds often result in situations where lives are lost or permanently altered when a crash occurs, and those instances are not flagged as crashes where speed was a factor. People walking, biking and driving are more likely to be killed or experience life-changing injuries on 35 mph streets than any other speed in Eugene.1 Surprisingly, however, it is not just our higher-speed streets that are problematic: nearly 1 in 3 of the fatal and serious injury crashes in Eugene occur on streets signed at 25 and 30 mph.2 These data indicate the need for a fundamental rethinking of speed and strategies to maintain people’s ability to move around Eugene. The data also indicate that darkness is overrepresented as a contributing factor to crashes. This is particularly true for people walking, who are about twice as likely to be involved in a crash during darkness as other travelers. People walking are also more likely to be killed or experience life-changing injuries in these crashes: approximately 40 percent of fatal and life- changing crashes involving a person walking occurs in darkness, as compared to less than 25 percent for all other travelers. Travel patterns of people walking suggest that this risk is likely even greater than the statistics show. A key part of improving safety is to address our high crash intersections, and to identify common features between those intersections that we can proactively address at other locations throughout the network. For example, we know that left turns are overrepresented among fatal and serious injury crashes in Eugene. Thus, changes to the way our intersections are designed for turning vehicles may be a critical way of addressing traffic danger in Eugene. 1 Approximately 36 percent of fatal and life-changing crashes across all modes occurred on streets posted at 35 mph. 2 This figure includes crashes for all modes occurring on streets or at the intersection of two streets posted at 25 or 30 mph. 6040 20 0 80 100 12020 MPH 10%Likelihood of fatality or severe injury 6040 20 0 80 100 12030 MPH 40%Likelihood of fatality or severe injury 6040 20 0 80 100 12040 MPH 70%Likelihood of fatality or severe injury Source: Tefft, Brian C. Impact speed and a pedestrian’s risk of severe injury or death. Accident Analysis & Prevention. 50. 2013 Likelihood of Death & Severe Injury Due to Speed 12 EUGENE VISION ZERO Anatomy of a Dangerous Street No Street Lighting Fast Moving Traffic Wide Street Unprotected Bike Lanes Unprotected Crossings Long Distance Between Signals Before More Marked CrosswalksShorter distances between safe crossings Buffered Bike LanesPhysical separation where possible Safer Speed LimitSafe speeds save lives More Street LightsEasier to see other people Safer CrosswalksMore flashing lights, stop lights and median islands Raised Center MedianSafer turns for people driving Shorter Crossing Distances at CrosswalksShortened with center median and protected bike lanes Complete sidewalksAll gaps filled Speed Safety CamerasSafe speeds save lives After Images courtesy of the City of Portland 13 EUGENE VISION ZERO Dangerous Behaviors Vision Zero data analysis revealed that a few behaviors seem to be related to many fatal and life-changing injury crashes in Eugene. Failure to yield is the most common contributing factor overall and for each mode, clearly indicating a high-priority need to be addressed for Vision Zero. Reckless and careless driving, as well as disregarding traffic controls are commonly associated with fatal and life-changing injury crashes for drivers and motorcyclists. Additionally, although people walking and biking are less likely to be involved in crashes involving reckless and careless driving overall, they are highly likely to be seriously injured or killed when they are involved. Furthermore, while the state of Oregon has made tremendous progress toward seatbelt usage over the last few decades, still over 1 in 10 fatal or life-changing injury motor vehicle crashes in the state involved an unbelted driver or passenger. Similarly, 1 in 14 fatal or life- changing injury motorcycle crashes may have not resulted in such severity if the motorcyclist had been wearing a helmet. Failure to Yield 50% 40% 30% 20% 10% 0% Speeding Reckless/ Careless Driving Motorcyclist no helmet No seatbelt S Pedestrian S Bicyclist S Motorcyclist S Driver/Passenger Top Contributing Factors to Fatal and Life-Changing Injury Crashes in Eugene City of Eugene, 2007-2015 crash data 14 EUGENE VISION ZERO We see people driving while using their phones every day. However, distracted driving is difficult to capture via crash statistics, as officers have not been allowed to cite distraction without seeing it firsthand. A recent study using broad cell phone data found that distracted driving was involved in over 50 percent of trips nationally that resulted in a crash.3 Starting October 1, 2017, Oregon House Bill 2597 enabled Oregon police to more actively target distracted drivers, giving the police the power to cite anyone holding a mobile device while driving, regardless of whether they see active talking, texting, and other use.4 Opportunities for distracted driving are not likely to go away soon, this legislation provides a potentially key tool to police to help combat a persistent problem that is difficult to otherwise detect. Each of us can also play a key role in stopping distracted driving. Go to https://www. eugene-or.gov/VisionZero to take the pledge not to engage with your mobile phone while driving. If you need to use your phone, take a moment to pull over to a safe place away from traffic. It can wait. Impairment Alcohol and drug impairment contributes substantially to fatalities in Eugene for all modes. While impairment is a factor in less than five percent of crashes overall, it plays a part in 50 percent of fatal motorcyclist crashes, 47 percent of fatal pedestrian crashes, 40 percent of fatal motorist crashes, and 29% of fatal bicyclist crashes. When impairment is involved in a serious or fatal pedestrian or bicycle crash, pedestrians were found to be impaired 72 percent of the time, and bicyclists 86 percent of the time. In some crashes, both 3 Cambridge Mobile Telematics, 2017. https://www.cmtelematics.com/press/new-data-cambridge-mobile-telematics-shows-distracted-driving-dangers/ 4 The law includes exceptions for those for whom communication is a necessary part of their job. See OR-HB 2597 for more details. Failure to yield: One or more parties involved in the crash did not follow proper yielding law and caused the crash. Examples of this are improperly proceeding through an all-way stop intersection, failing to yield when turning, or failing to stop for a pedestrian crossing the street. Speeding: This category includes crashes where drivers are cited either for driving in excess of the posted speed, or driving too fast for conditions. The latter occurs when driving the speed limit is actually hazardous, such as during rain or a snowstorm. Careless driving: Careless driving is a traffic violation that occurs when a person “drives any vehicle... in a manner that endangers or would be likely to endanger any person or property.” 1 Reckless driving: Reckless driving is a Class A misdemeanor and is charged by the responding officer when a person “is aware of and consciously disregards a substantial and unjustifiable risk that the result will occur or that the circumstance exists.” The driver does not take the same standard of care that “a reasonable person would observe in the situation.”2 Disregarding traffic control: A person who disregards traffic control fails to stop for any traffic control device including: a standard traffic signal, pedestrian hybrid beacon (such as on Broadway west of Patterson Street), or stop sign. 1 Oregon Revised Statutes, 811.135 2 Oregon Revised Statutes 161.085. 15 EUGENE VISION ZERO the person driving and the person walking or biking was impaired. For crashes only involving impaired motorists, approximately half involved only one vehicle in a solo crash, fatally or seriously injuring the driver. 25 percent of impaired driver crashes also resulted in a fatal or life-changing injury for a passenger. Fortunately, the Eugene Police Department and the University of Oregon Police Department are already working to develop strategies to address impaired driving, including educational campaigns and outreach, as well as targeted enforcement. Additionally, this plan will detail several key actions we can take both now and in the coming years to help reduce the influence of alcohol and drugs on safety in Eugene. Responding officers have a number of means of determining whether a driver is under the influence of alcohol or drugs. “DRE” in the crash form shown here stands for Drug Recognition Expert, an officer who has received training in recognizing drug impairment. Person #1 #2 None Under Influence - Drugs Under Influence - Alcohol Under Influence - Meds Unknown Determined By: Intoxilyzer Test Blood or Urine Test Field Sobriety Test Observed (Speech, Odor, Etc.) DRE Evaluation Statements Unknown Other (Explain) Results of Test: P 1_____%P 2_____% No Test Given Test Refused Tested for Drugs Results Not Available Impairment section of Oregon state crash reporting form Noelle Creighton-Manis, age 23 1/2 Noelle was one of those magical people — high energy, beautiful, kind, creative and goofy. When she entered a room, the lights got brighter and laughter increased. She was gifted with children, dancing, cooking, and art. Her future included traveling the world and becoming a pediatrician or pediatric nurse. Noelle was killed at age 23 ½, the night she was celebrating her half birthday. She was killed as a passenger in a car driven by a friend that was drunk and also speeding. City of Eugene, 2007-2015 crash data Factors Related to Fatal Crashes 40% Alcohol and Drug Related 60% Other factors 16 EUGENE VISION ZERO STRATEGIES to address deaths and life-changing injuries 17 EUGENE VISION ZERO Strategies There are six overarching strategies that the City and partners will use to work toward the goal of zero deaths and life-changing injuries. These strategies address the fundamental situations that cause crashes, make them more severe, challenge further analysis, and have the ability to prevent the City from moving as quickly as possible on actions. Actions presented in this plan grow out of these strategies to address the crash causes (street design, dangerous behaviors, and impairment) and engagement and accountability. Strategies are identified in the actions section with an icon. Reduce potential for conflict between users Decreasing the possibility that street users can come into conflict is the first line of defense against crashes. This means providing separated space for people walking, biking, driving and taking transit along the street. At intersections, this may mean separating potentially conflicting movements by time so two parties are not using the same space at the same time. Slow vehicle speeds When crashes do occur, they are less serious at slower speeds. Because not all crashes can be avoided, slowing speeds will decrease the severity of injuries and lead to fewer fatalities. Increased speed enforcement and changes to street designs can both help to decrease speeds on Eugene’s streets. Lowered speed limits may also address speeds but must be paired with either enforcement or street design, ideally with both. Reduce driving, bicycling, and walking under the influence. Impairment decreases reaction time for all street users and can lead to poor choices about navigating streets. Impairment stands out as an issue from additional dangerous behaviors because of its prevalence, its unique treatments (i.e., human behavior, not engineering solutions), and its influence on other unsafe behaviors. Encourage safer practices among people driving, walking and bicycling Many crashes result from choices made by street users. Disobeying traffic controls and laws, driving recklessly, and other behaviors may be best addressed through culture change in addition to changes to the streets themselves. Actions in this plan recognize, though, that some unsafe behaviors, such as walking in the street because there are no sidewalks, are the result of poor design that does not accommodate people walking. 18 EUGENE VISION ZERO Improve data collection and analysis While this plan is the result of a data-driven process, additional analysis will help further refine and prioritize efforts in the future. Crash data analyzed in this plan only includes police-reported and citizen-reported crashes to the ODOT, Oregon Driver and Motor Vehicle Division and thus misses those crashes when no report was filed. Each report type results in different data collected, and though most fatal and life-changing injury crashes are reported by police, we cannot ensure full coverage. Other data limitations regarding the exact location of crashes(e.g., traveling on a sidewalk versus in the street) and street design features (e.g., number of lanes) prevent additional analyses that could tell a more complete story of the crash cause(s). Support an institutional commitment to Vision Zero Getting to zero deaths and life-changing injuries requires a major commitment by the City as a whole. Actions in this category demonstrate institutional changes that will help Eugene reach its goal. This institutional commitment can influence residents’ support of the Vision Zero goal and actions to get to zero deaths and life-changing injuries. Public buy-in will be necessary to implement many of the actions listed in this plan. 19 EUGENE VISION ZERO THIS PAGE INTENTIONALLY LEFT BLANK 20 EUGENE VISION ZERO LOCATIONS of deaths and life-changing injuries 21 EUGENE VISION ZERO Where We Need to Focus Residents of Eugene know that there are streets where more crashes occur than others. There are streets that are more dangerous for people walking, people biking and people driving. In many cases, these are the same streets. In order to focus future investments in safety, City staff have identified and will prioritize streets based on the most recent available crash data (2007-2015). Eugene’s most dangerous streets are located throughout the city, crossing through and dividing neighborhoods from one another. These streets are in residential areas, commercial districts, downtown and near schools. They are all streets with higher volumes of traffic, because they connect people to where they need to go. Many of the streets have higher speed limits, but even some with lower speed limits are the site of higher numbers of fatal and life-changing injury crashes. The Vision Zero High Crash Network consists of streets with a higher number of crashes that result in deaths and serious injuries. There may be other streets in the city with more crashes that are less severe, but those are not the focus of the Vision Zero effort, saving lives is the goal. These streets are the City’s priority locations for making Eugene a safer place to drive, walk and bike. The Vision Zero High Crash Network The network includes Eugene’s most dangerous streets and intersections for people who travel in the city by all modes – driving, walking and biking. The Vision Zero High Crash Network is a compilation pulled from the top 15 most dangerous streets for each mode. Fatal and serious injury crashes for people walking, biking and driving were mapped individually to assess which streets were most dangerous. These lists were then reviewed with the community to check public perceptions and confirm that these streets have the worst safety issues. During the implementation phase of this Action Plan, the City will take a closer look at crash clusters along the Vision Zero High Crash Network to focus transportation safety improvements. 22 EUGENE VISION ZERO minor collector collector major collector minor arterial major arterial I-105 H W Y 9 9 N O R T H W E S T E X P Y DEL T A H W Y 7TH AVE 8TH AVE RA N D Y P A P E B E L T L I N E MLK JR BLVD PE A R L S T 13TH AVE HIL Y A R D S T AL D E R S T WIL L A M E T T E S T RI V E R R D 18TH AVE 11TH AVE COBU R G R D CRESCENT AVE DIVISION AVE BARGER DR ROYAL AVE JE F F E R S O N S T TS S R E B M A H C RANDY PAPE BELTLINE High Crash Network Source: ODOT crash data, 2007-2015 High crash intersection High crash street While the High Crash Network includes just 9% of Eugene streets, more than 70% of fatal and life- changing injury crashes occur on the High Crash Network. 23 EUGENE VISION ZERO We understand that the entire length of a street, though included in the Vision Zero High Crash Network, may not have a concerning history of serious crashes. The City will take on a corridor approach to reaching Vision Zero, but we are aware that some streets noticeably change context over their length. The City will focus work on those parts of streets known to have concerning crash histories or have characteristics similar to areas with higher numbers of serious crashes. The cross section of Wilamette Street changes several times over its length from downtown to South Eugene. 24 EUGENE VISION ZERO High Crash Intersections In addition to corridors, high crash intersections have also been identified. These are locations with higher numbers of crashes across all modes. High crash intersections include places like Roosevelt Boulevard & Highway 99 where two major streets meet in a wide intersection that also includes bike lanes, transit stops and lots of driveways. They also include a place like 18th Avenue & Hilyard Street where though there was only one serious injury crash, there were ten recorded moderate injury crashes for people biking. Though none of these resulted in a serious injury, this sheer volume of crashes indicates a safety problem. Roosevelt Boulevard & Highway 99 18th Avenue & Hilyard Street 25 EUGENE VISION ZERO These intersections are locations with three or more total crashes, using a weighted total. Fatal and major injury crashes for all modes are counted as one crash. Moderate injury crashes for people walking and biking are also counted, but at a weight of 0.5. This means an intersection with one fatal crash and four moderate injury crashes would be tallied as three total. Auto Bike Pedestrian High Crash Intersection Fatal Serious Injury Fatal Serious Injury Moderate Fatal Serious Injury Moderate Highway 99 & Roosevelt Boulevard 4 1 1 1 18th Avenue & Hilyard Street 1 9 1 MLK Jr Boulevard & Kinsrow Avenue 4 3 18th Avenue & Willamette Street 2 4 1 11th Avenue & Danebo Avenue 4 River Road & Silver Lane 2 1 1 1 30th Avenue/Amazon Parkway & Hilyard Street 3 1 1 Coburg Road & Oakmont Way 2 4 1 River Road & Hunsaker Lane 1 1 1 1 1 7th Avenue & Jefferson Street 2 1 1 Willamette Street & Brae Burn Drive 3 1 15th Avenue & Alder Street 1 1 3 Crescent Avenue & Gilham Road 3 1 Barger Drive & Terry Street 2 1 1 Northwest Expressway & Beltline (Westbound)3 Highway 99 & Royal Avenue 1 1 1 11th Avenue & Tyinn Street 2 2 River Road & Azalea Drive 3 Highway 99 & 5th Avenue 3 Division Avenue & Lone Oak Avenue 1 1 2 River Road/Chambers Street & Northwest Expressway 1 4 27th Avenue & Willamette Street 1 3 1 11th Avenue & Alder Street 3 Source: ODOT crash data, 2007-2015 26 EUGENE VISION ZERO The Vision Zero high crash streets of people driving includes streets with the largest number of fatal and serious injury crashes between 2007 and 2015. Vision Zero High Crash Streets of People Driving death life-changing injury Randy Pape Beltline Highway 99 11th Ave Coburg Rd River Rd 7th Ave I-105 Delta Highway Chambers St Northwest Expressway Jefferson St Martin Luther King Jr Blvd Willamette St Crescent Ave Roosevelt Blvd minor collector collector major collector minor arterial major arterialHigh Crash Network of People DrivingSource: ODOT crash data, 2007-2015 0 5 10 15 20 25 30 35 40 27 EUGENE VISION ZERO The Vision Zero high crash streets of people walking and biking consist of those streets with the largest number of fatal, serious injury and moderate injury crashes. Though the focus of Vision Zero is to eliminate crashes resulting in deaths and life-changing injuries, locations with high numbers of moderate injury crashes for vulnerable users are also important. 11th Ave Willamette Street 18th Ave 7th Ave River Rd Hilyard St Chambers St 13th Ave 8th Ave Royal Ave Pearl St Martin Luther King Jr Blvd 24th Ave Irvington Dr Echo Hollow Rd Vision Zero High Crash Streets of People Walking death life-changing injury moderate injury minor collector collector major collector minor arterial major arterialHigh Crash Network of People WalkingSource: ODOT crash data, 2007-2015 0 5 10 15 20 28 EUGENE VISION ZERO 18th Ave River Road Willamette St 11th Ave 13th Ave Hilyard St Chambers St Coburg Rd Highway 99 Alder St Pearl St 7th Ave Royal Ave 15th Ave 6th Ave Vision Zero High Crash Streets of People Biking death life-changing injury moderate injury The difference between a serious and moderate injury for vulnerable users—people walking and biking—can be as little as a vehicle traveling five miles an hour more. Additionally, moderate injury crashes for these modes could be underreported. minor collector collector major collector minor arterial major arterialHigh Crash Network of People BikingSource: ODOT crash data, 2007-2015 0 5 10 15 20 25 30 35 40 29 EUGENE VISION ZERO Communities of Concern As a guiding tenant of the Action Plan, equity will help guide implementation of Vision Zero in Eugene. Identifying Communities of Concern helps the City become more aware of historically underserved and disadvantaged neighborhoods in Eugene that may need and deserve more equitable transportation investments. The City acknowledges that there have been historic disinvestments in some communities over Eugene’s history. Compared to other neighborhoods, residents living in Communities of Concern may have fewer choices about how, when and where they move around our City, putting them at a higher risk of danger as they use our streets. The City will prioritize transportation safety investments in Communities of Concern. Our Vision Zero guiding tenets direct that both equity and safety data are used to identify and prioritize investment. Upon adoption of this plan, the City will undertake the action of developing a Communities of Concern map to guide investments. David Minor, age 27 David Minor was riding his bike when he was struck and killed by a car while turning at 13th & Willamette. He enjoyed music, skiing, camping, gardening, and spending time with his family and many friends. David was a dreamer, a thinker, a lover of life, and a passionate believer in social justice. He inspired those who knew him in the way he lived his life: championing the rights of all people, cherishing and nurturing relationships, and being a good steward of the environment. He was funny and fun, smart and kind, and will always be missed by those who knew and loved him. David’s parents are working with the City of Eugene to develop a two-way protected bike lane on 13th from downtown Eugene to the UO. 30 EUGENE VISION ZERO ACTIONS to prevent deaths and life-changing injuries 31 EUGENE VISION ZERO Taking Action Vision Zero requires bold action to reach a bold goal. Eliminating deaths and life-changing injuries on the transportation system is no small feat. Reaching that goal will take actions not just from City staff in many different departments, but also from partners at agencies such as the Lane Council of Governments (LCOG), Lane Transit District, Oregon Department of Transportation (ODOT), school districts, institutions of higher education such as the University of Oregon, civic groups, as well as Eugene residents and visitors. The actions presented here were developed in concert with partners who will be responsible for helping to execute and support them. The Task Force and Technical Advisory Committee for this plan drew from City departments, partner agencies, institutions and civic groups. In addition, City staff consulted individually with departments about actions that they could take and barriers that currently prevent them from working toward safer streets. The Plan’s guiding tenets of being data- driven, equitable and accountable will heavily influence the implementation of the actions laid out in this plan. Many actions will be on-going. Changing the design of the city’s streets is not a one-time step, it must happen consistently over years redesigning existing streets and with construction of new streets. Other actions, such as amending state law regarding speed limit setting, may take sustained effort, but they will have a concrete end. Actions are organized into two time frames: two-year and five-year actions. These categories mean that a given action will be completed (one-time actions) or started (on- going actions) within that time frame. Annual reports will be developed to assess the progress made and success of these actions. Reduce potential for conflict between users Slow vehicle speeds Reduce driving, bicycling and walking under the influence Encourage safer practices among people driving, walking and bicycling Improve data collection and analysis Support an institutional commitment to Vision Zero The information gathered in preparation of this plan illuminates the fact that best practices for the design and regulation of transportation facilities change over time. With more users and a greater diversity in means of travel on the City’s transportation system, streets that were well designed when they were created no longer meet our ideals. The plan’s goal is for the “key implementers” to carry out the identified actions according to the timeframes proposed. It is important to recognize that City budgetary constraints and changes in political support for the identified actions may impact the City’s ability to carry out the identified actions within the identified timeframes. Performance measures are provided to gauge the plan’s progress. 32 EUGENE VISION ZERO Street Design Actions in this area will influence the physical design of Eugene’s streets and the process by which street designs are developed and approved. Key Implementers • City of Eugene Department of Fire and Emergency Medical Services • City of Eugene Department of Planning and Development • City of Eugene Department of Public Works • Lane Council of Governments (LCOG) Safe Lane Coalition • Lane County Public Works • Oregon Department of Transportation • 4J and Bethel School Districts Two-year actions SD-1: Build capital safety infrastructure improvements along the Vision Zero High Crash Network each year. Example: Construction of a median island with additional enhancements to create a safer crossing for pedestrians and/or bicyclists on a wide street. SD-2: Implement signal phasing and operational changes for the High Crash Intersections each year. Example: Implement signal timing and phasing modifications or upgrades to reduce crashes and improve safety. SD-3: Use assessment of demonstration or pilot projects as proof of concept for safety infrastructure changes on the Vision Zero high crash streets and intersections. SD-4: Prioritize street maintenance (surface and striping) on the Vision Zero high crash streets and intersections. SD-5: Prioritize sidewalk infill, inspection and maintenance of sidewalks on the High Crash Streets for People Walking. SD-6: Review resurfacing and restriping maintenance projects with the safety of all users in mind. SD-7: Integrate Vision Zero into the City’s development review checklist to ensure that public rights-of-way are being designed for the most vulnerable users of our streets. SD-8: Review and revise City code governing site design’s interface with the public right-of-way to incorporate safe design standards for all modes and to prioritize safety along the high crash network. Example: current driveway/access management code (Chapter 7). The City is already taking a major step this year to improve the safety of its street design with development and planned adoption of updated Street Design Guidelines that recommend features for new streets and retrofits to existing ones. 33 EUGENE VISION ZERO Two-year actions SD-9: Work with ODOT to lower speed limits on the Vision Zero High Crash Network, accompany speed limit changes with street design changes and enforcement, when possible. SD-10: Support legislation to allow local City control to designate speed limits. Five-year actions SD-11: Build a database of information on street design features to enable systemic safety analysis. SD-12: Perform systemic safety analysis to determine street factors associated with crash types for each mode. SD-13: Conduct safety reviews of the transportation network in school areas. Develop education and engineering recommendations to improve safety for all modes of school travel. Agencies will work together to ensure site planning for schools incorporates traffic safety review prior to siting/opening new, reconstructed or relocated school(s). SD-14: Review and revise Fire & Emergency Medical Services call response procedures for appropriate response vehicle to call type. 34 EUGENE VISION ZERO Impairment With the amount of microbrews, marijuana and illicit drugs available in Eugene, driving, biking or walking under the influence of alcohol or drugs is a temptation that some Eugenians experience in their daily lives. Fatal and life-changing injury crashes that involve impairment negatively impact far too many of our community members. Actions in this area include educational activities, focused increase of enforcement, and institutional changes to make enforcement more feasible. The Lane Council of Governments (LCOG) has already convened a workgroup focused on developing strategies that will reduce driving under the influence throughout our region. The City of Eugene participates in this effort and will continue to partner with LCOG on many actions in this area. Key Implementers • City of Eugene Police Department • Lane Transit District • LCOG Safe Lane Coalition • Oregon Department of Transportation • University of Oregon • Alcohol serving establishments • Marijuana dispensaries • Taxi and Transportation Network Companies and their drivers Two-year actions I-1: Regularly deploy (year-round) high-visibility DUII enforcement in high-priority areas on nights with higher concentrations of severe and fatal crashes and on days with major community events. Pair enforcement with education. I-2: Create and routinely deliver collaborative driving, walking, and bicycling under the influence social marketing campaign(s). Time campaign and media slots with holidays or major celebrations that may spur impaired driving, biking and/or walking. Include enforcement effort notification in campaigns. I-3: Collaborate and build partnerships with transit, taxi companies, transportation network companies (TNCs) like Uber or Lyft, Oregon Liquor Control Commission, bar owners and dispensaries to reduce driving under the influence, especially targeting hot spot locations. Five-year actions I-4: Increase the number of police officers trained as Drug Recognition Experts. I-5: Support statewide efforts to reform DUII standards related to Blood Alcohol Content, arrest and adjudication process, and repeat offenders. 35 EUGENE VISION ZERO Dangerous Behaviors Actions in this area focus on influencing the behavior and attitudes of people driving, walking and biking in Eugene. Combined, these actions address failure to yield, reckless and careless driving, speeding and distraction. Public communications about dangerous behaviors will focus on creating a culture of safety, one where we are all responsible for our own and each other’s safety on Eugene’s streets. The City is already addressing additional dangerous behaviors through helmet education and giveaways for vulnerable users, and participation in the SafeKids car seat program. Key Implementers • City of Eugene Department of Fire and Emergency Medical Services • City of Eugene Police Department • City of Eugene Department of Public Works • Courts • Lane Transit District • Oregon Department of Transportation • SafeKids Coalition • LCOG Safe Lane Coalition In 2017, the legislature made legal the use of red light cameras for speed enforcement. The City of Eugene currently does not have any red light cameras. Legislation regarding expansion of rights to install fixed, automated speed safety cameras is expected in the 2019 long legislative session. 36 EUGENE VISION ZERO Two-year actions DB-1: Increase awareness of Vision Zero. DB-2: Deploy speed reader trailers to increase awareness of speeding and slow vehicle speeds. DB-3: Install automated enforcement cameras for red light violations on the Vision Zero High Crash Network using a data-driven process Direct revenue generated by traffic citations directly back to the City’s Vision Zero Program. DB-4: Focus traffic enforcement on the Vision Zero High Crash Network and on behaviors contributing to fatal and serious injury crashes (impaired driving, speeding, failure to yield, aggressive driving, and distracted driving). DB-5: Develop and implement a social marketing campaign that identifies dangerous behaviors. Include messaging that communicates personal and shared responsibility to keep our community safe. DB-6: Support legislation to allow the use of fixed stand-alone, unstaffed speed safety cameras on the Vision Zero High Crash Network and Intersections in Eugene. DB-7: Require training on traffic safety and Vision Zero values for all City employees receiving fleet driving permissions. Move toward requirement for defensive driving class. DB-8: Develop and implement a marketing campaign(s) that promotes defensive skills all road users can learn to increase safety including, but not limited to, 1) increase knowledge of defensive driving and biking skills that teach people how to anticipate other road users’ potential movements and 2) increase visibility for people walking and biking. Support with education and distribution of safety equipment such as sunglasses, lights and reflectors. Five-year actions DB-9: Increase number of Full Time Equivalent (FTE) of Eugene Police Department Patrol Operations Division so that officers have discretionary time to enforce traffic safety. DB-10: Increase FTE in order to hire an Injury Prevention Specialist with training in traffic safety for the Fire & Emergency Medical Services Department. DB-11: Provide transportation options and safety information to residents with suspended licenses at the City of Eugene Community Court and traffic court. DB-12: Purchase speed reader trailers designed for deployment on arterial streets. 37 EUGENE VISION ZERO Engagement and Accountability Engagement and Accountability is an action area critical to reducing fatal and life- changing injury crashes in Eugene. The City cannot achieve Vision Zero on its own—it will take a community to eliminate all fatalities and life-changing injuries on our streets. A key part of our work toward Zero will be engaging with the community to ensure that we are aware of our community’s concerns, tapping into their best ideas, and working with them to implement these strategies, leading to our greatest chance of success. To this end, we are working to secure long-term funding to support both the City and community groups working together to improve traffic safety through education, engineering and creative outreach. We are also committed to partnering with other organizations, including ODOT, our health and emergency services personnel, and our partners in the educational system to establish strong relationships, which will enable us to work together to incorporate safety in our culture at every opportunity. Vision Zero will and must continue to be in the public eye for us all to take our part in the shared responsibility of making Eugene’s streets safer. Actions in this area will continue to communicate the importance of getting to zero deaths and life-changing injuries and will keep Vision Zero visible in the community. We will also hold ourselves accountable for our goals, as reflected by the performance measures at the end of this plan. We pledge to update the public on the progress toward our goals via an annual report, providing our residents with information about how things are improving, what is coming next, our overall progress toward Zero, and key opportunities to become involved. We look forward to this journey toward Zero together, as a community. Actions in this area will keep the Vision Zero effort visible to City staff and the community. They will also enable direct community engagement in making Eugene’s streets safer. The City already integrates safety messaging into many public events and campaigns related to transportation, and this will continue, now linked to the Vision Zero program. New initiatives like the Oregon Friendly Driver program also demonstrate our existing and on- going commitment to changing the culture of safety in Eugene. Key Implementers • City of Eugene Department of Fire and Emergency Medical Services • City of Eugene Police Department (EPD) • City of Eugene Department of Public Works • Eugene 4J and Bethel School Districts • University of Oregon, Lane Community College and Northwest Christian University • LCOG Safe Lane Coalition • PeaceHealth 38 EUGENE VISION ZERO Two-year actions EA-1: Create an internal Vision Zero team that meets to review traffic crash data, equity data, and traffic safety performance. Task team members with presenting this data at appropriate meetings (monthly Public Works, Police, and other City meetings). EA-2: Institutionalize conducting before and after studies of Vision Zero Actions. EA-3: Develop and provide Vision Zero messaging on an ongoing basis to be delivered at City public, neighborhood group, stakeholder group meetings as well as City media interviews. EA-4: Work with local colleges/universities to create and implement a new walking, biking, driving and transit riding safety campaign for students. EA-5: Provide targeted outreach and training when adding pedestrian or bicycle facilities to teach street users how to navigate a newly constructed facility. EA-6: Convene a Vision Zero advisory body comprising Task Force and TAC members on a routine basis during the implementation phase. EA-7: Increase permanent FTE in the Public Works Department to implement Vision Zero. EA-15: Develop and publish a Communities of Concern map(s) to guide investments. Five-year actions EA-8: Coordinate with EMS/trauma center data to understand locations and magnitude of underreporting of crashes. EA-9: Develop a Street Ambassador program that empowers neighborhoods to develop safety programs, including using the existing City neighborhood grants program, as well as opening the opportunity to affordable housing communities. EA-10: Work with ODOT Transportation Safety Division and/or school districts to increase access to driver education for new and young drivers. EA-11: Work with ODOT to revise crash reporting standards to better inform data analysis. Work with Eugene Police Department to implement new data collection methods. EA-12: Develop processes and funding opportunities to support the participation of community-based organizations in the development and implementation of Vision Zero-related efforts. EA-13: Reinstate multimodal high school level transportation safety education programs that includes bicycle and pedestrian safety curriculum as well as transportation options information. EA-14: Provide bike/walk safety education to most K-8 students during their time with Eugene 4J and Bethel school districts through the Safe Routes to School Program. EA-16: Establish a sustainable funding source for Vision Zero infrastructure projects, education efforts and program management. 39 EUGENE VISION ZERO Measuring Our Progress Tracking our progress over time is critical to understanding if we’re on pace to meet our goals, and to helping us pinpoint what we can do better in the future. In this vein, we worked with the Task Force and Technical Advisory Committee to develop key performance metrics for our strategies and actions. We also drew from best practices in performance measures and other key Vision Zero resources to make sure we were holding ourselves to high, yet realistic standards. Along with our partners, we will monitor our progress and produce an annual report for the public. Our overall goal is to reach zero fatalities and life-changing injuries by 2035. To measure progress toward this goal, we will monitor the number of people killed or seriously injured on the transportation system. On the way to our 2035 goal, we will aim to decrease deaths and life-changing injuries by 25 percent by 2023 and 50 percent by 2028, using a rolling average. An update to the Vision Zero Action Plan will begin in 2023 as we near completion of the two- and five-year goals laid out in this plan. The following tables demonstrate how we propose to measure our progress toward each of the actions, in support of our overall goal. 40 EUGENE VISION ZERO APPENDIXPerformance Measures 41 EUGENE VISION ZERO Action Area: Street Design Action Time-frame Lead Support Performance Measure Reduce potential for conflicts between users SD-1 Build capital safety infrastructure improvements along the Vision Zero High Crash Network each year. Example: Construction of a median island with additional enhancements to create a safer crossing for pedestrians and/or bicyclists on a wide street. Two-year Public Works Annually, number and total cost of capital safety improvements built a) along corridor segments and b) at intersections in the Vision Zero High Crash Network SD-2 Implement signal phasing and operational changes for the High Crash Intersections each year. Example: Implement signal timing and phasing modifications or upgrades to reduce crashes and improve safety. Two-year Public Works Annually, number of phasing and operational changes implemented a) along the Vision Zero High Crash Network and b) at Vision Zero High Crash intersections SD-3 Use assessment of demonstration or pilot projects as proof of concept for safety infrastructure changes on the Vision Zero high crash streets and intersections. Two-year Public Works Annually, whether demonstration or pilot projects were used as proof of concept for safety infrastructure changes along the Vision Zero Crash Streets and High Crash Intersections SD-4 Prioritize street maintenance (surface and striping) on the Vision Zero high crash streets and intersections.Two-year Public Works Annually, percentage of total street maintenance that was completed along the Vision Zero High Crash Network SD-5 Prioritize sidewalk infill, inspection, and maintenance of sidewalks on the High Crash Streets for People Walking. Two-year Public Works Annually, linear feet of sidewalk infill constructed, number of sidewalk inspections and number of sidewalk repairs on the High Crash Streets for People Walking SD-6 Review resurfacing and restriping maintenance projects with the safety of all users in mind.Two-year City of Eugene, Public Works Lane County Public Works Percentage of resurfacing and restriping projects that address safety of all users SD-7 Integrate Vision Zero into the City’s development review checklist to ensure that public rights-of-way are being designed for the most vulnerable users of our streets. Two-year Public Works, Planning & Development Whether Vision Zero was integrated into the City’s development review checklist The following performance measures were created to help us understand our progress toward eliminating fatalities and life-changing injuries in Eugene. There are many actions we need to take over the next few years to help Eugene reach Zero. Measuring our progress regarding those actions (via output measures looking at what we've done), as well as how the needle is moving toward zero (via outcome measures looking at the results of our actions) will help us understand our progress toward the overall goal, as well as provide insight into what is working well and what needs more support along the way. 42 EUGENE VISION ZERO Action Time-frame Lead Support Performance Measure SD-8 Review and revise City code governing site design’s interface with the public right-of-way to incorporate safe design standards for all modes and to prioritize safety along the high crash network. Example: current driveway/access management code (Chapter 7). Two-year Public Works, Planning & Development a) Whether City code was revised to incorporate safe design standards for all modes; and b) whether safety was explicitly prioritized in proximity to the Vision Zero High Crash Network Slow vehicle speeds SD-9 Work with ODOT to lower speed limits on the Vision Zero High Crash Network, accompany speed limit changes with street design changes and enforcement, when possible. Two-year Public Works ODOT, EPD Annually, amount of high-crash segments with reduced speed limits, that received street design changes and/or enforcement SD-10 Support legislation to allow local City control to designate speed limits.Two-year City of Eugene, LCOG Safe Lane Coalition Whether the City of Eugene included local control to establish speed limits as a legislative priority Improve data collection and analysis SD-11 Build a database of information on street design features to enable systemic safety analysis.Five-year Public Works Whether a systemic safety database was built SD-12 Perform systemic safety analysis to determine street factors associated with crash types for each mode.Five-year Public Works Whether a systemic safety analysis was performed SD-13 Conduct safety reviews of the transportation network in school areas. Develop education and engineering recommendations to improve safety for all modes of school travel. Agencies will work together to ensure site planning for schools incorporates traffic safety review prior to siting/opening new, reconstructed or relocated school(s). Five-year School Districts, Social Service Providers, Public Works UO Annually, number of school area transportation networks that have received a safety review within the last five years SD-14 Review and revise Fire & Emergency Medical Services call response procedures for appropriate response vehicle to call type. Five-year Fire & EMS EPD Whether call response procedures for appropriate response vehicle to call type were reviewed and changed in order to help reach Vision Zero 43 EUGENE VISION ZERO Action Area: Impairment Action Time-frame Lead Support Performance Measure Reduce driving, walking, and bicycling under the influence I-1 Regularly deploy (year-round) high-visibility DUII enforcement in high-priority areas on nights with higher concentrations of severe and fatal crashes and on days with major community events. Pair enforcement with education. Two-year EPD UO, LCOG,Public Health 1) Annually, percentage of a) nights with higher concentrations of severe and fatal crashes and b) days with major community events with high-visibility DUII enforcement events in high-priority areas; 2) Annually, percentage of DUII enforcement events paired with education;3) Annually, number of DUII citations per 10,000 population4) Biennially, whether EPD received DUII grant funding to support high-visibility programs I-2 Create and routinely deliver collaborative driving, walking, and bicycling under the influence social marketing campaign(s). Time campaign and media slots with holidays or major celebrations that may spur impaired driving, biking and/or walking. Include enforcement effort notification in campaigns. Two-year LCOG Safe Lane Coalition, UO 1) Annually, a) number of driving under the influence social marketing campaigns delivered, b) percentage of campaigns that were timed to coincide with holidays or major celebrations, and c) percentage of campaigns including enforcement effort notifications;2) Number of visits to social media website and associated pages I-3 Collaborate and build partnerships with transit, taxi companies, transportation network companies (TNCs) like Uber or Lyft, Oregon Liquor Control Commission, bar owners and dispensaries to reduce driving under the influence, especially targeting hot spot locations. Two-year LCOG Safe Lane Coalition, EPD, local businesses, UO 1. Whether partnerships were built with a) transit, b) taxi companies, c) TNCs, d) bar owners, and e) dispensaries with a focus on reducing driving under the influence, particularly in target locations Annually, percentage of hot spot locations successfully targeted within the prior three years via partnerships with transit, taxi companies, TNCs, bar owners, and dispensaries for reducing driving under the influence I-4 Increase the number of police officers trained as Drug Recognition Experts.Five-year EPD Annually, number of police officers trained as DRE. I-5 Support statewide efforts to reform DUII standards related to Blood Alcohol Content, arrest and adjudication process, and repeat offenders. Five-year LCOG Safe Lane Coalition Whether LCOG supported statewide efforts to reform DUII standards related to a) BAC, b) arrest and adjudication process, and c) repeat offenders 44 EUGENE VISION ZERO Action Area: Dangerous Behaviors Action Time-frame Lead Support Performance Measure Slow vehicle speeds DB-1 Increase awareness of Vision Zero.Two-year Public Works EPD, BEST, LCOG Biennially, percentage of Eugene residents who take a “traffic safety pledge” and agree to drive without distraction, speeding, or intoxication DB-2 Deploy speed reader trailers to increase awareness of speeding and slow vehicle speeds.Two-year EPD Public Works 1) Annually, percentage of hours when signs are deployed. 2) Whether recorded speeds decrease over duration of a given deployment DB-9 Increase number of Full Time Equivalent (FTE) of Eugene Police Department Patrol Operations Division so that officers have discretionary time to enforce traffic safety. Five-year EPD Annually, 1) number of FTE of the Eugene Patrol Operations Division, 2) ratio of patrol operations dedicated/undedicated time spent on traffic stops, 3) number of FTE of the Eugene Police Department Traffic Enforcement Unit (TEU) and 4) ratio of dedicated/undedicated TEU time spent on traffic enforcement DB-12 Purchase speed reader trailers designed for deployment on arterial streets.Five-year EPD, Public Works Number of arterial speed reader boards purchased Reduce potential for conflicts between users DB-3 Install automated enforcement cameras for red light violations on the Vision Zero High Crash Network using a data-driven process. Direct revenue generated by traffic citations directly back to the City’s Vision Zero Program. Two-year Public Works EPD 1) Annually, percentage of intersections on the Vision Zero High Crash Network identified as having a high number of crashes related to disregarding a traffic signal with automated enforcement cameras for red light violations2) Annually, number of injury crashes occurring at a) each high crash intersection, b) within a quarter-mile radius, stratified by whether or not automated enforcement is present DB-4 Focus traffic enforcement on the Vision Zero High Crash Network and on behaviors contributing to fatal and serious injury crashes (impaired driving, speeding, failure to yield, aggressive driving, and distracted driving). Two-year EPD Annually, 1) Percentage of HCN streets receiving regular traffic enforcement; 2) percentage of tickets pertaining to behaviors contributing to fatal and serious injury crashes (speeding, failure to yield, aggressive driving) versus less serious infractions, both a) overall and b) specifically in the HCN; 3) Percentage of campaigns including enforcement effort notification 45 EUGENE VISION ZERO Action Time-frame Lead Support Performance Measure Encourage safer behavior among drivers, pedestrians, and bicyclists DB-5 Develop and implement a social marketing campaign that identifies dangerous behaviors. Include messaging that communicates personal and shared responsibility to keep our community safe. Two-year LCOG Safe Lane Coalition 1) Whether a social marketing campaign that identifies dangerous behaviors was a) developed, and b) implemented; 2) whether messaging that communicates personal and shared responsibility to keep community safe was included DB-6 Support legislation to allow the use of fixed stand-alone, unstaffed speed safety cameras on the Vision Zero High Crash Network and Intersections in Eugene. Two-year Public Works EPD Whether City of Eugene supported legislation to allow the use of fixed automated enforcement cameras for speed violations in Eugene Support an institutional commitment to Vision Zero DB-7 Require training on traffic safety and Vision Zero values for all City employees receiving fleet driving permissions. Move toward requirement for defensive driving class. Two-year Public Works 1) Whether training on traffic safety and Vision Zero values for all City employees receiving fleet driving permissions became a requirement; 2) whether participation in a defensive driving class became a requirement Annually, 1) percentage of City employees with fleet driving permissions trained on traffic safety and Vision Zero values in the last five years; 2) percentage of City employees with fleet driving permissions who have participated in a defensive driving class in the last five years DB-8 Develop and implement a marketing campaign(s) that promotes defensive skills all road users can learn to increase safety including, but not limited to, 1) increase knowledge of defensive driving and biking skills that teach people how to anticipate other road users’ potential movements and 2) increase visibility for people walking and biking. Support with education and distribution of safety equipment such as sunglasses, lights and reflectors. Two-year Public Works EPD 1) Whether a marketing campaign that promotes defensive skills for all road users was a) developed, and b) implemented; 2) whether support was provided in the form of distributed safety equipment DB-10 Increase FTE in order to hire an Injury Prevention Specialist with training in traffic safety for the Fire & Emergency Medical Services Department Five-year Fire & EMS Whether an injury prevention specialist was hired for Fire and EMS DB-11 Provide transportation options and safety information to residents with suspended licenses and at City of Eugene Community Court and traffic court. Five-year Courts, LTD, DMV Whether information on transportation options was provided a) to residents with suspended licenses, b) at City of Eugene Community Court, and c) at traffic court 46 EUGENE VISION ZERO Engagement and Accountability Action Time-frame Lead Support Performance Measure Improve data collection and analysis EA-1 Create an internal Vision Zero team that meets to review traffic crash data, equity data, and traffic safety performance. Task team members with presenting this data at appropriate meetings (monthly PW, Police, and other City agency meetings). Two-year Public Works, EPD 1) Number of internal Vision Zero team meetings occurring to review traffic crash data, equity data, and traffic safety performance; 2) number of meetings where team members presented this data (monthly PW, Police, and other City agency meetings) EA-2 Institutionalize conducting before and after studies of Vision Zero Actions.Two-year Public Works Percentage of before and after studies of Vision Zero Actions institutionalized, including identification of information necessary to analyze effectiveness of actions EA-8 Coordinate with EMS/trauma center data to understand locations and magnitude of underreporting of crashes.Five-year Public Works, Fire & EMS, PeaceHealth EPD Whether coordination with EMS/trauma center data was completed Encourage safer behavior among drivers, pedestrians, and bicyclists EA-3 Develop and provide Vision Zero messaging on an ongoing basis to be delivered at City public, neighborhood group and stakeholder group meetings, as well as City media interviews. Two-year Public Works Annually, number of City a) public, b) neighborhood group, and c) stakeholder group meetings where Vision Zero messaging was delivered EA-4 Work with local colleges/universities to create and implement a new walking, biking, driving and transit riding safety campaign for students. Two-year U of O, Lane CC, NW Christian University Whether the City worked with local colleges/universities to a) create and b) implement a new walking, biking, driving and transit riding safety campaign for students EA-5 Provide targeted outreach and training when adding pedestrian or bicycle facilities to teach street users how to navigate the newly constructed facility. Two-year Public Works Whether targeted outreach and training was provided to street users to teach them how to navigate new pedestrian and bicycle facilities EA-9 Develop a Street Ambassador program that empowers neighborhoods to develop safety programs, including using the existing City neighborhood grants program, as well as opening the opportunity to affordable housing communities. Five-year Public Works CIty Manager's Office 1) Whether a Street Ambassador program that promotes traffic safety in neighborhoods and along high crash corridors was developed; Annually, number of a) neighborhood and b) high crash corridor traffic safety events run by the volunteer Street Ambassador program EA-10 Work with ODOT Transportation Safety Division and/or school districts to increase access to driver education for new and young drivers. Five-year LCOG Safe Lane Coalition, DMV ODOT Annually, percentage of new and young drivers who participated in a driver education program 47 EUGENE VISION ZERO Action Time-frame Lead Support Performance Measure EA-11 Work with ODOT to revise crash reporting standards to better inform data analysis. Work with EPD to implement new data collection methods. Five-year Public Works, EPD ODOT 1) Whether crash reporting standards were revised to better capture data necessary for data analysis; 2) Whether EPD implemented new data collection methods EA-12 Develop processes and funding opportunities to support the participation of community-based organizations in the development and implementation of Vision Zero-related efforts. Five-year Public Works Number of community leaders and organizations supported to participate in Vision Zero-related efforts EA-13 Reinstate multimodal high school level transportation safety education programs that include bicycle and pedestrian safety curriculum as well as transportation options information. Five-year Fire & EMS, Lane County, School districts, EPD Whether high school level transportation safety education programs were revived EA-14 Provide bike/walk safety education to most K-8 students during their time with Eugene 4J and Bethel school districts through the Safe Routes to School Program. Five-year Eugene 4J and Bethel School Districts Point2Point at LTD, City of Eugene Recreation Percentage of schools providing bike/walk education Support an institutional commitment to Vision Zero EA-6 Convene a Vision Zero advisory body comprising Task Force and TAC members on a routine basis during the implementation phase. Two-year Public Works Annually, number of Vision Zero advisory body meetings EA-7 Increase permanent FTE in the Public Works Department to implement Vision Zero. Two-year Public Works Whether there is an increase in permanent FTE in Public Works to focus on Vision Zero implementation EA-15 Develop and publish a Communities of Concern map(s) to guide investments Two-year Public Works Whether a Communities of Concern Map was developed and published EA-16 Establish a sustainable funding source for Vision Zero infrastructure projects, education efforts and program management. Five-year Public Works, EPD, Fire & EMS Annually, number of dollars allocated toward a) Vision Zero infrastructure projects, b) education efforts, and c) program management www.eugene-or.gov/VisionZero G:\pub-wrks\eng\dept-admin\TRANSPORTATION COMMISSION\2021 Staff Memos\April 15, 2021\Packet\12. City of Ashland Evacuation Planning Staff Report.doc Memo Date: April 8, 2021 From: Scott A. Fleury To: Transportation Commission RE: City of Ashland Evacuation Planning BACKGROUND: At the September and October 2020 Commission meetings, the group discussed the current evacuation planning project being led by Ashland Fire and Rescue (AFR). Staff provided information on the project itself including scope of work and kickoff meeting presentational materials. The Evacuation Time Estimate (ETE) Study is now essentially complete with a final draft report provided to the City by KLD. This draft report is being reviewed by associated staff members within the Fire, Police, Administration, and Public Works Department(s). The final draft report is attached for reference along with the final meeting presentational materials provided by KLD. The ETE study breaks down the time necessary to evacuate the emergency management zones (EMZ) based on wildfire scenarios seasonally. The EMZ’s are defined by the City’s emergency services (Police & Fire). Figure 1 shows the EMZs for the City of Ashland. Chapter 7 of the document provides the overview of the ETEs. To generate an accurate model and determine the ETEs based on the various scenarios KLD conducted a road link analysis survey of the complete City. This involved: a. Field survey of road network by Traffic Engineers b. GPS Data of the road network c. Speeds/topography/signal locations/general characteristics d. Develop detailed computer representation for detailed modeling of ETE Information on the road link node analysis can be found in Appendix H of the study. Once all the information was plugged into the model the scenarios were run providing the ETE output data. The model output is generally conservative as items were run in sequence, not parallel. For example, if a resident works outside of the community it was calculated that that resident would commute back to Ashland and then begin preparation to evacuate even if there was already someone at home who could have started preparation. G:\pub-wrks\eng\dept-admin\TRANSPORTATION COMMISSION\2021 Staff Memos\April 15, 2021\Packet\12. City of Ashland Evacuation Planning Staff Report.doc Figure 1: The study defined numerous scenarios for modeling ETE for each of the EMZs and combinations of the EMZs. Table 1 shows the multiple scenarios modeled to develop the ETEs. Table 1: Evacuation Scenarios The results of the various modeled scenarios are shown in Table 2 below. The longest ETE is for the Fall-Midweek-Midday scenario, due to Southern Oregon University school year being in full swing (3:10 hours for 90% of total population to evacuate). Breakdowns of the maps for all the EMZ scenarios are shown in Appendix G - Evacuation Regions. G:\pub-wrks\eng\dept-admin\TRANSPORTATION COMMISSION\2021 Staff Memos\April 15, 2021\Packet\12. City of Ashland Evacuation Planning Staff Report.doc Table 2: ETE Summary In addition to the standard scenarios modeled, KLD also simulated a couple “what if” scenarios. These included the additional of emergency on-ramps at the North Mountain overpass, the Nevada Bridge connection and both together. The outcomes of these “what if” scenarios are shown below in Table 3. Table 3: “What If” Scenarios G:\pub-wrks\eng\dept-admin\TRANSPORTATION COMMISSION\2021 Staff Memos\April 15, 2021\Packet\12. City of Ashland Evacuation Planning Staff Report.doc General Recommendations: Access Impaired Neighborhoods Consideration should be given regarding placement of evacuation signage, in accordance with the MUTCD (see Section 11.3), along Frank Hill Rd, Ashland Mine Rd, Granite St, Ashland Loop Rd, Morton St, Terrace St, Elkader St, Highwood Dr, Pinecrest Terrace, Timberlake Dr, Emigrant Creek Rd, and E Nevada St to guide evacuees out of these neighborhoods. Coordinate with Southern Oregon University with respect to evacuation preparedness. Improve mobilization time. Evacuate in less vehicles. Education and Outreach. Previous Background: The current evacuation planning effort was developed by AFR as they received a State Homeland Security Grant for an evacuation planning study. Through a formal solicitation process KLD was selected to perform the study and develop an Evacuation Time Estimate (ETE) using substantial local information provided by staff. The project is now essentially complete with the final draft study in the hands of staff for review and comment. Staff received a presentation from KLD on the study April 5th and are working to finalize comments for KLD before the study is completely finalized. KLD Project Approach: 2. Kickoff Meeting (Compete) a. Discuss assumptions, needs, study area etc. 3. Review existing data and plans G:\pub-wrks\eng\dept-admin\TRANSPORTATION COMMISSION\2021 Staff Memos\April 15, 2021\Packet\12. City of Ashland Evacuation Planning Staff Report.doc a. Emergency Management Plan b. Adjacent Communities Plans c. Natural Hazard Mitigation Plan d. Others 4. Demographic survey (Complete) a. Online survey b. Advertisement-CERT/Nixle/Other 5. Road Survey and link-node analysis network (Complete) a. Field survey of road network by Traffic Engineers b. GPS Data c. Speeds/topography/signal locations/general characteristics d. Develop detailed computer representation for detailed modeling of ETE 6. Access impaired neighborhoods (Complete) a. Single ingress/egress routes b. Bottlenecks c. Recommendations-safe refuge, access and signage 7. Identify regions and scenarios (Complete) a. Existing area command zones (APD) for evacuation management zones (EMZ) b. Evacuation of single EMZs and entire EMZ area to be considered c. Six scenarios for planning purposes 8. Data gathering, analysis and processing (Complete) a. Facility data (schools, medical, day care, tourist attraction) b. Transportation resources (buses, ambulances, wheelchair transport, mutual aid, mobilization time) c. Plans, studies, etc. d. GIS information 9. Fuel and weather modeling (Complete) a. Scenario based fire spread modeling 10. Progress meetings (Complete) a. Project status check ins 11. Compute evacuation time estimates (ETE) (Complete) a. Specific modeling of scenarios and EMZs to compute ETE b. Identify congestion patterns and locate bottlenecks c. Visual representations 12. Estimate impacts on ETE (Complete) a. ETC from step 10 and “what if” scenario planning 13. Technical report (Complete) a. Develop final comprehensive draft technical report b. Address comments c. Final report 14. Final meeting (Complete) a. Final summary presentation of findings Previous planning and associated documentation: City of Ashland Emergency Management Plan: The plan provides a framework for coordinated response and recovery activities during a large- scale emergency. The plan describes how various agencies and organizations in the City of G:\pub-wrks\eng\dept-admin\TRANSPORTATION COMMISSION\2021 Staff Memos\April 15, 2021\Packet\12. City of Ashland Evacuation Planning Staff Report.doc Ashland will coordinate resources and activities with other Federal, State, local, community- and faith-based organizations, tribal, and private-sector partners. https://www.ashland.or.us/Files/AshlandEMP_FullPlan_Final_07312018.pdf November 18, 2018 Study Session: Evacuation and Process Planning- Emergencies or disasters, such as earthquakes, floods, wildfires, or hazardous materials spills, may require the need to evacuate people from hazardous areas to lower risk zones. In such an event, emergency responders or Emergency Operations Center personnel may determine that the evacuation of a part or all the city is necessary to minimize the risk of injury or death. This report is intended to identify the local resources and capacity to effectively carry out an evacuation process. Minutes Staff Report August 14, 2017 Study Session: Essential Route and Structure discussion with the City Council. Minutes Staff Report Wildfire Evacuation Route: Current wildfire evacuation rout map posted on the City’s website Wildfire Evacuation Route Map Wildland Fire Action Guide: Part of the ready set go program and details (planning document). http://www.ashland.or.us/SIB/files/RSG%20National%20Action%20Guide%2C%20Print%20Re ady%20w%20crop%20marks.pdf Ashland Fire and Rescue provides information on developing your own personal evacuation action plan including template forms that can be downloaded from the City’s website. Read! Set! Go! Personal Evacuation Action Plan Level 1 Ready – Be Ready, Be Firewise. Be ready for the potential to evacuate. Be aware of the dangers in your area by monitoring emergency service websites and local media outlets for information. Take personal responsibility, prepare your family and belongings so your home is ready to leave. For wildfire, be Firewise by reducing your home's ignition potential. Assemble emergency supplies and belongings in a safe place. Create an Evacuation Plan with escape routes and make sure all those residing within the home know the plan of action. Taking the correct route during an evacuation is critical for your safety. Tune into information about where to go during an evacuation, see sources below. Make sure you're registered in Nixle if you want contact in any way other than a landline telephone. Register for Nixle by clicking here Level 2 Set – Situational Awareness. Be set to evacuate at a moment’s notice. This level indicates significant danger in your area and voluntarily relocating to a shelter or family is advisable. This G:\pub-wrks\eng\dept-admin\TRANSPORTATION COMMISSION\2021 Staff Memos\April 15, 2021\Packet\12. City of Ashland Evacuation Planning Staff Report.doc may be the only notice that you receive; emergency services cannot guarantee that they will be able to reach you again if the condition worsen. If you do decide to stay, pack your emergency items and be ready to leave at a moment’s notice. Level 3 Go! – Act Early! Leave immediately and follow your personal evacuation plan. Do not delay leaving by gathering your belongings or make efforts to save your home. Danger in your areas is imminent and you should evacuate immediately. If you chose not to evacuate, emergency services many not be able to assist you. DO NOT plan to return to check on your house or animals until it's declared safe to do so. Staying informed during an emergency is critical. These are some of the ways we will relay information: Nixle Citizen Alert System: ashland.or.us/nixle Ashland Emergency Broadcast Station: 1700 AM Wildfire Information Hotline: 541-552-2490 City of Ashland Website: www.ashland.or.us Jackson County Emergency Management: www.rvem.orghe City of Ashland Emergency Management Plan (Link) CONCLUSION: No formal action required at this time. The information is for discussion and comment purposes moving forward. Staff expects there to be additional planning work associated with the ETE including internal planning for continued education and outreach to the community on evacuation planning/readiness. Staff has spoken with Kittelson Associates regarding the information contained within the ETE and how to incorporate that information into the Transportation System Plan update with respect to transportation network enhancements that could improve evacuation processes. The updated scope and fee from Kittelson will be brought before the Commission at the May/June meetings for review, discussion and recommendation to award a contract for services. Finally, staff will continue to work with reginal partners to enhance evacuation safety. G:\pub-wrks\eng\dept-admin\TRANSPORTATION COMMISSION\2021 Staff Memos\April 15, 2021\Packet\12. City of Ashland Evacuation Planning Staff Report.doc 2 4 Wildfire Reception Center 1 Reception Center 2 EMZ to Reception Center 1 EMZ to Reception Center 2 If you live here, and… You travel here to evacuate the area, then… You are at risk until you leave the area being evacuated 5 Evacuation travel time depends on the relationship between Traffic Demand and Highway Capacity (Supply). When Demand exceeds Capacity over some time period, travel speeds decline and congestion, exhibited by queuing and stop-and-go conditions, is present. Traffic does move, but slowly. 6 7 ETE for Special Facilities DYNEV-II DYNAMIC TRAFFIC SIMULATION MODEL ETE for General Population (Residents, Tourists, Employees) Evacuation Speeds DEMAND •Permanent Residents •Tourists •Employees •Special Events •External Traffic •Special Facilities SUPPLY •Evacuation Routes •Number of Lanes •Roadway Capacity •Traffic Control Devices •Traffic Control Tactics Permanent Residents - year- round population within the EMZs. Census data and results from the demographic survey were used to compute the number of residents and evacuating resident vehicles. Shadow Evacuees –those who live outside of the EMZs but may voluntarily evacuate. Tourists - those people visiting the community parks, sporting events, camps, and other recreational areas. Data was provided by the City. Assumptions were made to fill in any gaps and to compute vehicle occupancies. Employees - those people who work within the EMZs, but who live outside the EMZs. Census data and results from the demographic survey were used to compute the number of employees and employee vehicles. External Traffic – vehicles whose origin and destination are outside the EMZs but pass through the study area as part of their trip. 8 Residents Resident Vehicles Tourists Tourist Vehicles Employees Employee Vehicles External Traffic EMZs 21,449 13,666 5,150 2,252 2,302 2,173 0 Shadow Region 10,099 6,490 0 0 0 0 8,412 Total 31,548 20,156 5,150 2,252 2,302 2,173 8,412 Schools, medical facilities, transit dependent individuals and Southern Oregon University were also considered. 9 10 A link-node analysis network (computerized representation of physical roadway system) was developed. Link-node analysis network calibrated using Road Survey (July 2020) observations. See Appendix H of the report for detailed maps and entry data for the link-node analysis network. 11 Scenario Season Day of Week Time of Day 1 Summer Midweek Midday 2 Summer Weekend Midday 3 Summer Midweek, Weekend Evening 4 Fall Midweek Midday 5 Fall Weekend Midday 6 Fall Midweek, Weekend Evening 12 13 14 0 20 40 60 80 100 0 60 120 180 240 Pe r c e n t  of  Po p u l a t i o n  Be g i n n i n g  Ev a c u a t i o n  Tr i p Elapsed Time from Evacuation Advisory (min) Trip Generation Distributions Employees/Tourists Residents with Commuters Residents with no Commuters 16 Summer Fall Midweek Weekend Midweek  Weekend Midweek Weekend Midweek  Weekend Scenario:(1) (2) (3) (4) (5) (6) Region Midday Midday Evening Midday Midday Evening R01 –EMZ 1 1:55 1:45 1:40 1:55 1:45 1:40 R02 –EMZ 2 1:55 1:50 1:45 1:55 1:50 1:45 R03 –EMZ 3 1:40 1:50 1:45 1:35 1:50 1:45 R04 –EMZ 4 2:00 1:55 1:55 2:00 1:55 1:55 R05 –EMZ 5 1:30 1:25 1:20 1:30 1:30 1:20 R06 –EMZ 6 1:50 1:50 1:50 1:45 1:50 1:50 R07 –EMZ 7 1:50 1:50 1:50 1:50 1:50 1:50 R08 –EMZ 8 1:50 1:55 1:50 1:50 1:55 1:50 R09 –EMZ 9 1:55 1:50 1:50 1:55 1:50 1:50 R10 –EMZ 10 1:55 1:55 1:55 1:55 1:55 1:55 R11 ‐Western Ashland 1:50 1:50 1:45 1:35 1:50 1:45 R12 ‐Eastern Ashland 1:50 1:50 1:50 1:55 1:50 1:50 R13 ‐Northern Ashland 2:00 1:55 1:50 2:00 1:55 1:50 R14 ‐Central Ashland 1:45 1:50 1:45 2:30 1:50 1:45 R15 ‐Southern Ashland 2:05 1:55 1:55 2:45 1:55 1:55 R16 ‐Northern and Central  Ashland 1:55 1:50 1:50 2:30 1:50 1:50 R17 ‐Southern and Central  Ashland 1:55 1:50 1:50 1:50 1:50 1:50 R18 ‐All EMZs 2:35 2:25 2:15 3:10 2:25 2:20 17 Summer Fall Midweek Weekend Midweek  Weekend Midweek Weekend Midweek  Weekend Scenario:(1) (2) (3) (4) (5) (6) Region Midday Midday Evening Midday Midday Evening R01 –EMZ 1 4:00 4:00 4:00 4:00 4:00 4:00 R02 –EMZ 2 4:00 4:00 4:00 4:00 4:00 4:00 R03 –EMZ 3 4:00 4:00 4:00 4:00 4:00 4:00 R04 –EMZ 4 4:00 4:00 4:00 4:00 4:00 4:00 R05 –EMZ 5 4:00 4:00 4:00 4:00 4:00 4:00 R06 –EMZ 6 4:00 4:00 4:00 4:00 4:00 4:00 R07 –EMZ 7 4:00 4:00 4:00 4:00 4:00 4:00 R08 –EMZ 8 4:00 4:00 4:00 4:00 4:00 4:00 R09 –EMZ 9 4:00 4:00 4:00 4:00 4:00 4:00 R10 –EMZ 10 4:00 4:00 4:00 4:00 4:00 4:00 R11 ‐Western Ashland 4:00 4:00 4:00 4:00 4:00 4:00 R12 ‐Eastern Ashland 4:00 4:00 4:00 4:00 4:00 4:00 R13 ‐Northern Ashland 4:00 4:00 4:00 4:00 4:00 4:00 R14 ‐Central Ashland 4:00 4:00 4:00 4:00 4:00 4:00 R15 ‐Southern Ashland 4:00 4:00 4:00 4:00 4:00 4:00 R16 ‐Northern and Central  Ashland 4:00 4:00 4:00 4:00 4:00 4:00 R17 ‐Southern and Central  Ashland 4:00 4:00 4:00 4:00 4:00 4:00 R18 ‐All EMZs 4:00 4:00 4:00 4:00 4:00 4:00 Dictated by trip mobilization 18 Maximum travel time is approximately 1 hour and 30 minutes. 0% 20% 40% 60% 80% 100% 0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 Pe r c e n t  of  To t a l  Ve h i c l e s Elapsed Time (h:mm) ETE and Trip Generation  Fall, Midweek, Midday (Scenario 4) Trip Generation ETE Travel Time Need to identify the region numberNeed to identify the region number Need to identify the scenario numberNeed to identify the scenario number What is the ETE for the following set of circumstances?What is the ETE for the following set of circumstances? It is Wednesday, October 14th at 12:00PM (Fall – school in session, Midweek, Midday). Wildfire ignited to the north and only threatens the northern areas of Ashland.The 90th percentile ETE is needed. 19 20 Scenario Season Day of Week Time of Day Conditions 1 Summer Midweek Midday Normal 2 Summer/Spring Weekend Midday Normal 3 Summer/Spring Midweek, Weekend Evening Normal 4 Fall Midweek Midday Normal 5 Fall Midweek Midday Reduced Roadway Capacity 6 Fall Weekend Midday Normal 7 Fall Midweek, Weekend Evening Normal 21 Region Emergency Management Zone (EMZ) Description 12345678910 R01 EMZ1 X R02 EMZ2 X R03 EMZ3 X R04 EMZ4 X R05 EMZ5 X R06 EMZ6 X R07 EMZ7 X R08 EMZ8 X R09 EMZ9 X R10 EMZ10 X R11 Western Ashland ‐EMZ1, EMZ2,  EMZ3, EMZ4 XXXX R12 Eastern Ashland ‐EMZ5, EMZ6,  EMZ7, EMZ8, EMZ9, EMZ10 XXXXXX R13 Northern Ashland ‐EMZ1, EMZ2,  EMZ10 XX X R14 Central Ashland ‐EMZ3, EMZ7,  EMZ8, EMZ9 XXXX R15 Southern Ashland ‐EMZ4, EMZ5,  EMZ6 XXX R16 Northern and Central Ashland ‐ EMZ1, EMZ2, EMZ3, EMZ7, EMZ8,  EMZ9, EMZ10 XXX XXXX R17 Southern and Central Ashland ‐ EMZ3, EMZ4, EMZ5, EMZ6, EMZ7,  EMZ8, EMZ9 XXXXXXX R18 All EMZ XXXXXXXXXX EMZ(s) Shelter‐in‐Place EMZ(s)  Evacuate Table 7‐1.  Time to Clear the Indicated Area of 90 Percent of the Affected Population 22 Summer Fall Midweek Weekend Midweek  Weekend Midweek Weekend Midweek  Weekend Scenario:(1) (2) (3) (4) (5) (6) Region Midday Midday Evening Midday Midday Evening R01 –EMZ 1 1:55 1:45 1:40 1:55 1:45 1:40 R02 –EMZ 2 1:55 1:50 1:45 1:55 1:50 1:45 R03 –EMZ 3 1:40 1:50 1:45 1:35 1:50 1:45 R04 –EMZ 4 2:00 1:55 1:55 2:00 1:55 1:55 R05 –EMZ 5 1:30 1:25 1:20 1:30 1:30 1:20 R06 –EMZ 6 1:50 1:50 1:50 1:45 1:50 1:50 R07 –EMZ 7 1:50 1:50 1:50 1:50 1:50 1:50 R08 –EMZ 8 1:50 1:55 1:50 1:50 1:55 1:50 R09 –EMZ 9 1:55 1:50 1:50 1:55 1:50 1:50 R10 –EMZ 10 1:55 1:55 1:55 1:55 1:55 1:55 R11 ‐Western Ashland 1:50 1:50 1:45 1:35 1:50 1:45 R12 ‐Eastern Ashland 1:50 1:50 1:50 1:55 1:50 1:50 R13 ‐Northern Ashland 2:00 1:55 1:50 2:00 1:55 1:50 R14 ‐Central Ashland 1:45 1:50 1:45 2:30 1:50 1:45 R15 ‐Southern Ashland 2:05 1:55 1:55 2:45 1:55 1:55 R16 ‐Northern and Central  Ashland 1:55 1:50 1:50 2:30 1:50 1:50 R17 ‐Southern and Central  Ashland 1:55 1:50 1:50 1:50 1:50 1:50 R18 ‐All EMZs 2:35 2:25 2:15 3:10 2:25 2:20 24 Legend EMZ Area 25 27 Note:  2‐4 Ambulances can be made available from Jackson County Fire  Department in the case that more are needed. Transportation Resource Buses Wheelchair Buses Ambulances Resources Available Ashland School District 19 0 0 Ashland Fire & Rescue 0 0 2 Jackson County Fire District 0 0 2‐4 TOTAL: 19 0 2 Resources Needed Medical Facilities (Table 3‐7):66 32 Schools (Table 3‐10):75 0 0 Transit‐Dependent Population (Table 11‐1):40 0 TOTAL TRANSPORTATION NEEDS: 85 6 32 28 29 Table 9-2. School Evacuation Time Estimates Table 9-4. Special Facility Evacuation Time Estimates School Driver  Mobilization  Time (min) Loading  Time (min) Dist. To  Safety (mi) Average Speed (mph) Travel  Time to  Safety  (min) ETE  (hr:min) City of Ashland, OR Helman Elementary School 90 15 2.8 3.7 45 2:30 Ashland High School 90 15 3.2 2.6 74 3:00 Walker Elementary School 90 15 4.0 10.4 24 2:10 Ashland Middle School 90 15 5.3 11.1 29 2:15 John Muir Elementary School 90 15 0.3 10.1 2 1:50 Bellview Elementary School 90 15 6.9 21.1 20 2:05 Southern Oregon University 90 15 6.1 12.1 30 2:15 Maximum ETE: 3:00 Average ETE: 2:20Medical Facility Patient Mobilization  (min) Loading Rate (min per  person) People  Max Loading  Time (min) Dist. To EMZ  Bdry  (mi) Speed  (mph) Travel Time  to Safety (min) ETE  (hr:min) Asante Ashland Community Hospital Ambulatory 90 1 63 30 2.3 26.6 5 2:05 Wheelchair  Bound 90 5 31 75 2.3 29.8 5 2:50 Bedridden 90 30 31 60 2.3 22.4 6 2:40 Ashland Surgery Center Ambulatory 90 1 13 13 2.0 20.7 6 1:50 Wheelchair  Bound 90 5 6 30 2.0 38.3 3 2:05 Bedridden 90 30 6 60 2.0 38.2 3 2:35 Linda Vista Nursing Home & Rehab Center Ambulatory 90 1 50 30 2.1 38.3 3 2:05 Wheelchair  Bound 90 5 25 75 2.1 38.2 3 2:50 Bedridden 90 30 25 60 2.1 38.2 3 2:35 Maximum ETE: 2:50 Average ETE: 2:25 30 Bus Route  Number Bus Route  Number of  Buses Mobilization  (min) Route Length  (miles) Speed  (mph) Route  Travel Time  (min) Pickup  Time  (min) ETE  (hr:min) 1Servicing EMZ 1, EMZ 2 and EMZ 10 1 90 5.88 10.1 35 30 2:35 2Servicing EMZ 3 and EMZ 4 1 90 3.98 4.8 50 30 2:50 3Servicing EMZ 5 and EMZ 6 1 90 4.26 10.1 26 30 2:30 4Servicing EMZ 7, EMZ 8 and EMZ 9 1 90 3.82 5.2 45 30 2:45 Maximum ETE: 2:50 32 •Congestion persists in the EMZs for approximately 3 hours and 40 minutes. •ETE are insensitive to changes in trip generation times up to 3 hours and 40 minutes. Trip generation times longer than that dictate ETE. •Increases in shadow evacuee percentages have minimal impacts to ETE (< 10 minutes). Trip Generation Time  (Minutes) Evacuation Time Estimates for All EMZs  90th Percentile 100th Percentile 3 Hours 3:05 3:40 4 Hours  (Base)3:10 4:00 5 Hours 3:10 5:00 Percent Shadow  Evacuation  Evacuating Shadow  Beyond the Ridge  Line Evacuation Time Estimate for All EMZs 90th Percentile 100th Percentile 0 0 3:05 4:00 6 (Base)451 3:10 4:00 100 6,490 3:20 4:10 33 Case Evacuating  Resident Vehicles  Evacuation Time Estimates for All  Communities  90th Percentile 100th Percentile Base Case 13,666 3:10 4:00 One Vehicle per HH 9,560 2:40 4:00 34 Case Evacuation Time Estimates for All EMZs 90th Percentile ETE 100 th Percentile ETE Base Case 3:10 4:00 E Nevada St over Bear Creek 3:00 4:00 I‐5 Ramps near Nevada St 3:00 4:00 E Nevada St over Bear Creek and I‐5  Ramps 2:55 4:00 35 Case Evacuation Time Estimates for All EMZs 90th Percentile ETE 100 th Percentile Base Case 3:10 4:00 Wildfire to the North (Northbound Roadways Closed –Traffic forced Southbound)6:20 7:25 Wildfire to the South (Southbound Roadways Closed –Traffic forced Northbound)5:35 6:35 Rebecca Cohen, PE, PTOE (631) 524-5937 rcohen@kldcompanies.com Brian Halpin (631) 524-5925 bhalpin@kldcompanies.com Rebecca Cohen, PE, PTOE (631) 524-5937 rcohen@kldcompanies.com Brian Halpin (631) 524-5925 bhalpin@kldcompanies.com 36 March 2021 Draft Report, Rev. 0 KLD TR – 1217  City of Ashland    Evacuation Time Estimate Study            Work performed for the City of Ashland, by:     KLD Engineering, P.C.  1601 Veterans Memorial Highway, Suite 340  Islandia, NY 11749  e‐mail: kweinisch@kldcompanies.com   City of Ashland  i KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Table of Contents 1 INTRODUCTION .................................................................................................................................. 1‐1  1.1 Overview of the ETE Process ...................................................................................................... 1‐1  1.2 Location of the Study Area ......................................................................................................... 1‐3  1.3 Preliminary Activities ................................................................................................................. 1‐4  2 STUDY ESTIMATES AND ASSUMPTIONS ............................................................................................. 2‐1  2.1 Data Estimates ........................................................................................................................... 2‐1  2.2 Study Methodological Assumptions .......................................................................................... 2‐2  2.3 Study Assumptions ..................................................................................................................... 2‐2  3 DEMAND ESTIMATION ....................................................................................................................... 3‐1  3.1 Permanent Residents ................................................................................................................. 3‐2  3.1.1 Special Facilities ................................................................................................................. 3‐4  3.1.2 University Students ............................................................................................................ 3‐4  3.2 Shadow Population .................................................................................................................... 3‐5  3.3 Tourist Population ...................................................................................................................... 3‐5  3.4 Employees .................................................................................................................................. 3‐6  3.5 Medical Facilities ........................................................................................................................ 3‐7  3.6 Transit Dependent Population ................................................................................................... 3‐7  3.7 School Population Demand ........................................................................................................ 3‐9  3.8 External Traffic ......................................................................................................................... 3‐10  3.9 Background Traffic ................................................................................................................... 3‐11  3.10 Summary of Demand ............................................................................................................... 3‐11  4 ESTIMATION OF HIGHWAY CAPACITY ................................................................................................ 4‐1  4.1 Capacity Estimations on Approaches to Intersections .............................................................. 4‐2  4.2 Capacity Estimation along Sections of Highway ........................................................................ 4‐4  4.3 Application to the City of Ashland Study Area ........................................................................... 4‐6  4.3.1 Two‐Lane Roads ................................................................................................................. 4‐6  4.3.2 Multi‐Lane Highway ........................................................................................................... 4‐6  4.3.3 Freeways ............................................................................................................................ 4‐7  4.3.4 Intersections ...................................................................................................................... 4‐8  4.4 Simulation and Capacity Estimation .......................................................................................... 4‐8  4.5 Boundary Conditions .................................................................................................................. 4‐9  5 ESTIMATION OF TRIP GENERATION TIME .......................................................................................... 5‐1  5.1 Background ................................................................................................................................ 5‐1  5.2 Fundamental Considerations ..................................................................................................... 5‐2  5.3 Estimated Time Distributions of Activities Preceding Event 5 ................................................... 5‐3  5.4 Calculation of Trip Generation Time Distribution ...................................................................... 5‐4  5.4.1 Statistical Outliers .............................................................................................................. 5‐5  6 EVACUATION CASES ........................................................................................................................... 6‐1  7 GENERAL POPULATION EVACUATION TIME ESTIMATES (ETE) .......................................................... 7‐1  7.1 Voluntary Evacuation and Shadow Evacuation ......................................................................... 7‐1  7.2 Patterns of Traffic Congestion during Evacuation ..................................................................... 7‐2  7.3 Evacuation Rates ........................................................................................................................ 7‐3  7.4 Evacuation Time Estimate (ETE) Results .................................................................................... 7‐4    City of Ashland  ii KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    7.5 Guidance on Using ETE Tables ................................................................................................... 7‐5  8 ACCESS IMPAIRED NEIGHBORHOODS ................................................................................................ 8‐1  8.1 Data Sources .............................................................................................................................. 8‐1  8.2 Analysis ...................................................................................................................................... 8‐2  8.3 ETE Results, Safe Refuge Areas, and Evacuation Signage .......................................................... 8‐3  9 TRANSIT‐DEPENDENT AND SPECIAL FACILITY EVACUATION TIME ESTIMATES ................................. 9‐1  9.1 ETEs for Transit Dependent People ........................................................................................... 9‐2  10 TRAFFIC MANAGEMENT STRATEGY ............................................................................................. 10‐1  10.1 Assumptions ............................................................................................................................. 10‐2  10.2 Additional Considerations ........................................................................................................ 10‐3  11 EVACUATION ROUTES AND EVACUATION SIGNAGE ................................................................... 11‐1  11.1 Evacuation Routes .................................................................................................................... 11‐1  11.2 Evacuation Signage .................................................................................................................. 11‐2  A. GLOSSARY OF TRAFFIC ENGINEERING TERMS .................................................................................. A‐1  B. DYNAMIC TRAFFIC ASSIGNMENT AND DISTRIBUTION MODEL ......................................................... B‐1  C. DYNEV TRAFFIC SIMULATION MODEL ............................................................................................... C‐1  C.1 Methodology .............................................................................................................................. C‐2  C.1.1 The Fundamental Diagram ................................................................................................. C‐2  C.1.2 The Simulation Model ........................................................................................................ C‐2  C.1.3 Lane Assignment ................................................................................................................ C‐6  C.2 Implementation ......................................................................................................................... C‐6  C.2.1 Computational Procedure .................................................................................................. C‐6  C.2.2 Interfacing with Dynamic Traffic Assignment (DTRAD) ..................................................... C‐7  D. DETAILED DESCRIPTION OF STUDY PROCEDURE .............................................................................. D‐1  E. FACILITY DATA .................................................................................................................................... E‐1  F. DEMOGRAPHIC SURVEY ..................................................................................................................... F‐1  F.1 Introduction ............................................................................................................................... F‐1  F.2 Survey Instrument and Sampling Plan ....................................................................................... F‐1  F.3 Survey Results ............................................................................................................................ F‐2  F.3.1 Household Demographic Results ....................................................................................... F‐2  F.3.2 Evacuation Response ......................................................................................................... F‐3  F.3.3 Time Distribution Results ................................................................................................... F‐5  F.4 Conclusions ................................................................................................................................ F‐5  G EVACUATION REGIONS ..................................................................................................................... G‐1  H. EVACUATION ROADWAY NETWORK ................................................................................................. H‐1  J. EVACUATION SENSITIVITY STUDIES ................................................................................................... J‐1  J.1 Effect of Changes in Trip Generation Times .............................................................................. J‐1  J.2 Effect of Changes in the Number of People in the Shadow Region Who Relocate ................... J‐1  J.3 Effect of Reducing the Evacuation Demand – One Vehicle per Household ............................... J‐2  J.4 Effect of Direction of Wildfire Approach ................................................................................... J‐2  J.4.1 A Wildfire to the North wherein Traffic is Forced Southbound ......................................... J‐2  J.4.2 A Wildfire to the South wherein Traffic is Forced Northbound ......................................... J‐3    City of Ashland  iii KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    J.4.3 Patterns of Traffic Congestion due to Wildfire Approach.................................................. J‐3  J.5 Additional “What‐if” Scenarios .................................................................................................. J‐4    Note:  Appendix I intentionally skipped     City of Ashland  iv KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    List of Figures  Figure 1‐1.  Study Area Location ................................................................................................................ 1‐8  Figure 1‐2.  Study Area Link‐Node Analysis Network ................................................................................ 1‐9  Figure 3‐1.  EMZ Boundaries .................................................................................................................... 3‐19  Figure 3‐2.  Census Boundaries within the Study Area ............................................................................ 3‐20  Figure 4‐1.  Fundamental Diagrams ......................................................................................................... 4‐10  Figure 5‐1.  Events and Activities Preceding the Evacuation Trip ............................................................ 5‐13  Figure 5‐2.  Evacuation Mobilization Activities ........................................................................................ 5‐14  Figure 5‐3.  Comparison of Data Distribution and Normal Distribution .................................................. 5‐15  Figure 5‐4.  Comparison of Trip Generation Distributions ....................................................................... 5‐16  Figure 6‐1.  EMZ Boundaries ...................................................................................................................... 6‐7  Figure 7‐1.  Study Area Shadow Region ..................................................................................................... 7‐9  Figure 7‐2.  Congestion Patterns at 30 Minutes after the Advisory to Evacuate .................................... 7‐10  Figure 7‐3.  Congestion Patterns at 1 Hour after the Advisory to Evacuate ............................................ 7‐11  Figure 7‐4.  Congestion Patterns at 2 Hours after the Advisory to Evacuate .......................................... 7‐12  Figure 7‐5.  Congestion Patterns at 3 Hours after the Advisory to Evacuate .......................................... 7‐13  Figure 7‐6.  Congestion Patterns at 3 Hours and 30 Minutes after the Advisory to Evacuate ................ 7‐14  Figure 7‐7.  Congestion Patterns at 4 Hours after the Advisory to Evacuate .......................................... 7‐15  Figure 7‐8.  Evacuation Time Estimates ‐ Scenario 1 for Region R18 ...................................................... 7‐16  Figure 7‐9.  Evacuation Time Estimates ‐ Scenario 2 for Region R18 ...................................................... 7‐17  Figure 7‐10.  Evacuation Time Estimates ‐ Scenario 3 for Region R18 .................................................... 7‐18  Figure 7‐11.  Evacuation Time Estimates ‐ Scenario 4 for Region R18 .................................................... 7‐19  Figure 7‐12.  Evacuation Time Estimates ‐ Scenario 5 for Region R18 .................................................... 7‐20  Figure 7‐13.  Evacuation Time Estimates ‐ Scenario 6 for Region R18 .................................................... 7‐21  Figure 8‐1.  Access Impaired Neighborhoods with the City Limits ............................................................ 8‐4  Figure 8‐2.  Aggregated Tax Lots ................................................................................................................ 8‐5  Figure 8‐3.  Neighborhoods without Low Density Resident Areas ............................................................ 8‐6  Figure 8‐4.  Neighborhoods without Low Density Resident Areas and Moderate to Very High Wildfire  Risk to People and Property ....................................................................................................................... 8‐7  Figure 8‐5.  Resident Address Points ......................................................................................................... 8‐8  Figure 8‐6.  Access Impaired Neighborhoods outside of the City Limits ................................................... 8‐9  Figure 8‐7.  Combined Access Impaired Neighborhoods ......................................................................... 8‐10  Figure 9‐1.  Chronology of Transit Evacuation Operations ...................................................................... 9‐10  Figure 11‐1.  Evacuation Route Map ........................................................................................................ 11‐6  Figure 11‐2.  Transit‐Dependent Bus Routes Servicing the EMZ ............................................................. 11‐7  Figure 11‐3.  Evacuation Route Sign Example .......................................................................................... 11‐8  Figure B‐1.  Flow Diagram of Simulation‐DTRAD Interface ........................................................................ B‐4  Figure C‐1.  Representative Analysis Network ......................................................................................... C‐12  Figure C‐2.  Fundamental Diagrams ......................................................................................................... C‐13  Figure C‐3.  A UNIT Problem Configuration with t1 > 0 ............................................................................ C‐13  Figure C‐4.  Flow of Simulation Processing (See Glossary:  Table C‐3) .................................................... C‐14  Figure D‐1.  Flow Diagram of Activities ..................................................................................................... D‐5  Figure E‐1.  Schools and Preschools/Daycares within the EMZ ................................................................. E‐5  Figure E‐2.  Medical Facilities within the EMZ ........................................................................................... E‐6  Figure E‐3.  Major Employers within the EMZ ........................................................................................... E‐7  Figure E‐4.  Recreational Facilities and Lodging Facilities within the EMZ ................................................ E‐8    City of Ashland  v KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure F‐1.  Household Size in the Study Area ........................................................................................... F‐6  Figure F‐2.  Vehicle Availability .................................................................................................................. F‐6  Figure F‐3.  Vehicle Availability ‐ 1 to 4 Person Households ...................................................................... F‐7  Figure F‐4.  Vehicle Availability – 5 to 7+ Person Households ................................................................... F‐7  Figure F‐5.  Electric Vehicle Ownership ..................................................................................................... F‐8  Figure F‐6.  Functional or Transportation Needs ....................................................................................... F‐8  Figure F‐7.  Commuters in Households in the Study Area ......................................................................... F‐9  Figure F‐8.  Modes of Travel in the Study Area .......................................................................................... F‐9  Figure G‐1.  Region R01 ............................................................................................................................. G‐3  Figure G‐2.  Region R02 ............................................................................................................................. G‐4  Figure G‐3.  Region R03 ............................................................................................................................. G‐5  Figure G‐4.  Region R04 ............................................................................................................................. G‐6  Figure G‐5.  Region R05 ............................................................................................................................. G‐7  Figure G‐6.  Region R06 ............................................................................................................................. G‐8  Figure G‐7.  Region R07 ............................................................................................................................. G‐9  Figure G‐8.  Region R08 ........................................................................................................................... G‐10  Figure G‐9.  Region R09 ........................................................................................................................... G‐11  Figure G‐10.  Region R10 ......................................................................................................................... G‐12  Figure G‐11.  Region R11 ......................................................................................................................... G‐13  Figure G‐12.  Region R12 ......................................................................................................................... G‐14  Figure G‐13.  Region R13 ......................................................................................................................... G‐15  Figure G‐14.  Region R14 ......................................................................................................................... G‐16  Figure G‐15.  Region R15 ......................................................................................................................... G‐17  Figure G‐16.  Region R16 ......................................................................................................................... G‐18  Figure G‐17.  Region R17 ......................................................................................................................... G‐19  Figure G‐18.  Region R18 ......................................................................................................................... G‐20  Figure H‐1.  Evacuation Time Estimate Study Link‐Node Analysis Network ........................................... H‐21  Figure H‐2.  Link‐Node Analysis Network – Grid 1 .................................................................................. H‐22  Figure H‐3. Link‐Node Analysis Network – Grid 2 ................................................................................... H‐23  Figure H‐4. Link‐Node Analysis Network – Grid 3 ................................................................................... H‐24  Figure H‐5. Link‐Node Analysis Network – Grid 4 ................................................................................... H‐25  Figure H‐6. Link‐Node Analysis Network – Grid 5 ................................................................................... H‐26  Figure H‐7. Link‐Node Analysis Network – Grid 6 ................................................................................... H‐27  Figure H‐8. Link‐Node Analysis Network – Grid 7 ................................................................................... H‐28  Figure H‐9. Link‐Node Analysis Network – Grid 8 ................................................................................... H‐29  Figure H‐10. Link‐Node Analysis Network – Grid 9 ................................................................................. H‐30  Figure H‐11. Link‐Node Analysis Network – Grid 10 ............................................................................... H‐31  Figure H‐12. Link‐Node Analysis Network – Grid 11 ............................................................................... H‐32  Figure H‐13. Link‐Node Analysis Network – Grid 12 ............................................................................... H‐33  Figure H‐14. Link‐Node Analysis Network – Grid 13 ............................................................................... H‐34  Figure H‐15. Link‐Node Analysis Network – Grid 14 ............................................................................... H‐35  Figure J‐1.  Wildfire Approach Congestion Pattern Comparison at 1 Hour after the Advisory   to Evacuate ................................................................................................................................................ J‐7  Figure J‐2.  Wildfire Approach Congestion Pattern Comparison at 2 Hours after the Advisory   to Evacuate ................................................................................................................................................ J‐8  Figure J‐3.  Wildfire Approach Congestion Pattern Comparison at 3 Hours after the Advisory   to Evacuate ................................................................................................................................................ J‐9    City of Ashland  vi KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure J‐4.  Wildfire Approach Congestion Pattern Comparison at 4 Hours after the Advisory   to Evacuate .............................................................................................................................................. J‐10  Figure J‐5.  Wildfire Approach Congestion Pattern Comparison at 5 Hours after the Advisory   to Evacuate .............................................................................................................................................. J‐11  Figure J‐6.  Wildfire Approach Congestion Pattern Comparison at 6 Hours after the Advisory   to Evacuate .............................................................................................................................................. J‐12  Figure J‐7.  Wildfire Approach Congestion Pattern Comparison at 7 Hours after the Advisory   to Evacuate .............................................................................................................................................. J‐13  Figure J‐8.  Wildfire Approach Congestion Pattern Comparison at 7 Hours and 20 Minutes after the  Advisory to Evacuate ................................................................................................................................ J‐14  Figure J‐9.  E Nevada St Bridge and I‐5 On Ramps ................................................................................... J‐15        City of Ashland  vii KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    List of Tables  Table 1‐1.  Stakeholder Interaction ........................................................................................................... 1‐7  Table 1‐2.  Highway Characteristics ........................................................................................................... 1‐7  Table 2‐1.  Evacuation Scenario Definitions ............................................................................................... 2‐5  Table 3‐1.  County Population Change and Annual Growth Rate from April 1, 2010 to July 1, 2019 ..... 3‐12  Table 3‐2.  Municipality Population Change and Annual Growth Rate from April 1, 2010 to   July 1, 2019 .............................................................................................................................................. 3‐12  Table 3‐3.  EMZ Permanent Resident Population .................................................................................... 3‐12  Table 3‐4.  Permanent Resident Population and Vehicles by EMZ .......................................................... 3‐13  Table 3‐5.  Summary of Tourists and Tourist Vehicles ............................................................................. 3‐13  Table 3‐6.  Summary of Employees and Employee Vehicles Commuting into the EMZ .......................... 3‐14  Table 3‐7.  Medical Facilities Transit Demand Estimates ......................................................................... 3‐15  Table 3‐8.  Transit‐Dependent Population Estimates .............................................................................. 3‐15  Table 3‐9.  School and Preschool/Daycare Population Demand Estimates ............................................. 3‐16  Table 3‐10.  Study Area External Traffic Demand .................................................................................... 3‐16  Table 3‐11.  Summary of Population Demand ......................................................................................... 3‐17  Table 3‐12.  Summary of Vehicle Demand ............................................................................................... 3‐18  Table 5‐1.  Event Sequence for Evacuation Activities ................................................................................ 5‐8  Table 5‐2.  Time Distribution for Notifying the Public ............................................................................... 5‐8  Table 5‐3.  Time Distribution for Employees to Prepare to Leave Work/College ...................................... 5‐9  Table 5‐4.  Time Distribution for Commuters to Travel Home ................................................................ 5‐10  Table 5‐5.  Time Distribution for Population to Prepare to Evacuate ..................................................... 5‐11  Table 5‐6.  Mapping Distributions to Events ............................................................................................ 5‐11  Table 5‐7.  Description of the Distributions ............................................................................................. 5‐12  Table 5‐8.  Trip Generation Histograms for the EMZ Population ............................................................ 5‐12  Table 6‐1.  Description of Evacuation Regions ........................................................................................... 6‐3  Table 6‐2.  Evacuation Scenario Definitions ............................................................................................... 6‐4  Table 6‐3.  Percent of Population Groups Evacuating for Various Scenarios ............................................ 6‐5  Table 6‐4.  Vehicle Estimates by Scenario .................................................................................................. 6‐6  Table 7‐1.  Time to Clear the Indicated Area of 90 Percent of the Affected Population ........................... 7‐7  Table 7‐2.  Time to Clear the Indicated Area of 100 Percent of the Affected Population ......................... 7‐8  Table 9‐1.  Summary of Transportation Needs and Resources ................................................................. 9‐6  Table 9‐2.  School Evacuation Time Estimates ........................................................................................... 9‐7  Table 11‐1. Summary of Transit‐Dependent Bus Routes ......................................................................... 11‐3  Table 11‐2. Bus Route Description ........................................................................................................... 11‐4  Table A‐1.  Glossary of Traffic Engineering Terms .................................................................................... A‐1  Table C‐1.  Selected Measures of Effectiveness Output by DYNEV II ........................................................ C‐8  Table C‐2.  Input Requirements for the DYNEV II Model ........................................................................... C‐9  Table C‐3.  Glossary .................................................................................................................................. C‐10  Table E‐1.  Schools and Preschools/Daycares within the EMZ .................................................................. E‐2  Table E‐2.  Medical Facilities within the EMZ ............................................................................................ E‐3  Table E‐3.  Major Employers within the EMZ............................................................................................. E‐3  Table E‐4.  Recreational Facilities and Lodging Facilities within the EMZ.................................................. E‐4  Table G‐1.  Percent of EMZ Population Evacuating for Each Region ........................................................ G‐2  Table H‐1.  Evacuation Roadway Network Characteristics ....................................................................... H‐2  Table H‐2.  Nodes in the Link‐Node Analysis Network which are Controlled ......................................... H‐18    City of Ashland  viii KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Table J‐1.  Evacuation Time Estimates for Trip Generation Sensitivity Study ............................................ J‐5  Table J‐2.  Evacuation Time Estimates for Shadow Sensitivity Study ........................................................ J‐5  Table J‐3.  Evacuation Time Estimates for Reduction in Demand .............................................................. J‐6  Table J‐4.  Evacuation Time Estimates for Direction of Wildfire Approach ............................................... J‐6  Table J‐5.  Evacuation Time Estimates for Additional “What‐if” Scenarios ............................................. J‐16              City of Ashland ES‐1 KLD Engineering, P.C.  Wildfire Egress Study  Rev. 0   EXECUTIVE SUMMARY  Wildfires, and the impacts thereof, are a critical issue facing the world.  Increased temperatures, drought,  unusually low humidity, and increased winds contribute to the increase in frequency and severity of  wildfires.  Of the numerous concerns surrounding wildfire emergencies, one of the most critical is the  availability of transportation services and facilities.  Under normal circumstances, the transportation  system provides capacity for evacuation (of both those who can evacuate independently as well as those  who need transportation assistance) and allows for emergency responders to enter an area at risk.  During  a wildfire, however, the transportation system can become inadequate due to unsafe roadway conditions,  abandoned vehicles blocking the roadway, and/or congestion.  As a result, the risk to public health and  the environment – and the potential for loss of life – increases.   The City of Ashland is a small mountain town of about 6 square miles that has a very unique linear design  as it rests in three mountain ranges – the Cascades to the east, the coastal range to the west, and the  Siskiyous to the south. The City is located 15 miles north of the California border and is home to over  20,000 residents.  Due to its topography, the City has limited ingress/egress routes. Highway 99, Highway  66, and Interstate‐5 are the major roadways servicing the City.    As such, there is an urgent need to identify areas and populations most vulnerable to fire and to develop  a plan for evacuations in the City of Ashland. This study analyzed traffic conditions and evacuation times  for a variety of evacuation scenarios of the City of Ashland.  Alternative emergency management strategies  that could be used in response to an evacuation of the City were also examined.  This study, and the results  contained within this report, will further inform the City’s emergency planning and protective action  decision making.  A traffic/evacuation simulation model (Dynamic Evacuation Simulation Model, or DYNEV‐II) is used to  compute evacuation time estimates (ETE) using the procedure shown in Figure ES‐1. The supply and  demand are input to DYNEV‐II.  The supply input to DYNEV‐II is in the form of a link‐node analysis network  – a computerized replica of the roadway system within the study area (see Appendix H).  The link‐node  analysis network is calibrated to include roadway characteristics such as free speed (speed that drivers  are comfortable traveling at in the lack of traffic congestion), number of lanes, type of traffic control  (signal, stop sign, manned), etc. that were collected during a field survey in July 2020. The demand input  to DYNEV‐II includes people that could be living, working or recreating in the area who may need to be  evacuated during an emergency. Resident population was obtained from the 2010 US Census and was  projected to the year 2020. Employee and tourist data were obtained from the the US Census Longitudinal  Employer‐Household Dynamics and from local stakeholders, supplemented by internet searches.  Special  facilities that may need to be evacuated include schools, preschools, and medical facilities. Lastly, external  traffic are vehicles that have their origin and destination outside of Ashland but travel through the city on  their route thereby potentially delaying evacuating vehicles from within the city.   The two main outputs of the DYNEV‐II model are ETE for general population (evacuees with personal  vehicles) and route‐specific evacuation speeds, which are used to compute the ETE for special facilities  (schools and medical facilities) and the transit‐dependent population. These times are critical for  developing an effective plan to protect the health and safety of the public.     City of Ashland ES‐2 KLD Engineering, P.C.  Wildfire Egress Study  Rev. 0  City officials have divided the City of Ashland into 10 Emergency Management Zones (EMZs). The  boundaries of the EMZs follow political or geographical boundaries, which helps the City communicate  evacuation orders to the public. Given the large wilderness areas surrounding the City of Ashland, it is  highly unlikely that a wildfire would only impact Ashland. Rather, neighboring communities which are also  along the ridgelines of these wildnerness areas are likely to evacuate at the same time. The vehicles  evacuating from these neighboring communities could delay egress from Ashland; this phenomenon is  referred to as a “shadow evacuation.” Figure 3‐2 shows the EMZs that comprise the City of Ashland, as  well as the shadow evacuation region surrounding the City and encompassing the neighbouring city of  Talent.  The general population ETE are presented in Tables 7‐1 and 7‐2.  These data are the times needed to clear  the indicated regions (individual EMZs or groupings of EMZs) of 90 and 100 percent of the population  occupying these regions, respectively. For definitions of scenarios (demand changes due to temporal  variations) and regions (area to be evacuated varies by wildfire situation), see Section 6 and Appendix G,  respectively. The 100th percentile ETE is defined as the time when the last evacuation vehicle crosses the  boundary of the regions shown in Appendix G. These computed ETE include consideration of mobilization  time (how long it takes people to prepare to evacuate prior to actually getting in their vehicle and driving  out of the area) and of estimated voluntary evacuations from areas outside of the area given the  evacuation order.   Critical findings of the study include:   The 100th percentile ETE for the evacuation of individual EMZs are entirely dictated by the time  needed to mobilize rather than by traffic congestion.  All traffic congestion clears prior to the  completion of mobilization for all regions.  As such, it is recommended that the 90th percentile is  used when making protective action decisions.  (See Section 7.4). It is highly unlikely that an  individual EMZ would be evacuated for a wildfire. It is more likely that an individual EMZ would be  evacuated for a smaller event such as a gas leak or a HAZMAT spill. Thus, the ETE for individual  EMZs presented in this study can be used for hazards other than wildfire.    The 90th percentile ETE ranges between 1 hour and 20 minutes and 3 hours and 10 minutes.   Evacuations involving multiple EMZs have longer ETE than evacuations of individual EMZs.  See  Table 7‐1.   Several access impaired neighborhoods have been identified and are shown in Table 8‐7.  These  areas have high wildfire risk, high population densities, and limited means of egress.  These  neighborhoods would require early notification during an approaching wildfire as they may have  difficulty evacuating if a fire were present.      City of Ashland ES‐3 KLD Engineering, P.C.  Wildfire Egress Study  Rev. 0   Transportation resources available were provided by city emergency management  representatives. Table 9‐1 summarizes the information received.  Also included in the table are the  number of buses needed to evacuate schools, medical facilities and transit‐dependent population.  These numbers indicate there are not sufficient resources available to evacuate everyone in a  single wave.  (See Section 9). There are two ways to handle this shortfall of transportation  resources: (1) the same vehicles are used multiple times; passengers are picked up and dropped  off outside of the area at risk. The vehicle then returns to the City to pick up additional passengers.  (2) Memorandums of Understanding (MOUs) or Mutual Aid Agreements are established with  neighboring cities or with the State to provide additional transportation resources to assist with  evacuation.   One traffic control point (TCP) was recommended as a result of the findings of this study:  at the  intersection of OR‐99 and Crowson Rd  This ETE was modeled explicitly in the ETE simulations (See  Section 10).   Congestion within the ETE exists within the EMZs for just over 3 hours and 30 minutes.  As such, if  the time to mobilize is less than 3 hours and 40 minutes, congestion dictates the 100th percentile  ETE.  If the time to mobilize is longer than 3 hours and 40 minutes, the 100th percentile is dictated  by the trip generation time.  See Section J.1.   The Shadow Region was defined as the area beyond the EMZ including the City of Talent to the  north, Emigrant Lake to the south and the surrounding ridgelines.  All of these areas are sparsely  populated areas.  Therefore, changes in the percentage of people that decide to voluntarily  evacuate beyond the city limits will have little to no impact (at most 10 minutes) on an evacuation  of the City of Ashland.    If the evacuation demand could be reduced – by limiting to one evacuating vehicle per household,  for example – the 90th percentile ETE decreases by 30 minutes.     The entire City takes 4 hours, on average, if the city can evacuate in either direction.  o For an evacuation case wherein a wildfire is in the north forcing evacuees southbound, the  90th percentile ETE increases by 3 hours and 25 minutes at most.  See Section J.4.  o For an evacuation case wherein a wildfire is in the south forcing evacuees northbound, the  90th percentile ETE increases by 2 hours and 35 minutes at most.  See Section J.4.   Two roadway improvement projects were tested to determine their impact on ETE:  o The addition of a bridge to reconnect E Nevada St over Bear Creek decreases the 90th  percentile ETE by 10 minutes.  See Section J.5.  o The addition of ramps to I‐5 along N Mountain Ave decreases the 90th percentile ETE by 10  minutes.  See Section J.5.  o If both the bridge and I‐5 Freeway Ramps were implemented, the 90th percentile ETE  decreases by 15 minutes.  See Section J.5.  The City of Ashland should consider revising their emergency plans to incorporate the lessons learned  from this study.  Once revised, the new procedures developed should be practiced through exercises and    City of Ashland ES‐4 KLD Engineering, P.C.  Wildfire Egress Study  Rev. 0  drills.  Lessons learned from these exercises and drills should then be used to improve the emergency  plans further. Emergency planning is an iterative process.  City residents and visitors should be informed, through public outreach, of the emergency plan contents,  including how they will be notified, which evacuation routes to use, what to do if they need transportation  assistance, how long it might take to evacuate, and what would happen if critical evacuation routes are  unavailable.  Citizen participation in evacuation drills is recommended. Education is key in protecting  public health and safety.           City of Ashland ES‐5 KLD Engineering, P.C.  Wildfire Egress Study  Rev. 0    SUPPLY •Evacuation Routes •Number of Lanes •Roadway Capacity •Traffic Control Devices •Traffic Control Tactics ETE for General Population (Residents, Tourists, Employees) DEMAND •Permanent Residents •Tourists •Employees •Special Events •External Traffic •Special Facilities DYNEV-II DYNAMIC TRAFFIC SIMULATION MODEL Avg. Speed of Evacuating Vehicles ETE for Special Facilities   Figure ES‐1.  ETE Methodology      City of Ashland ES‐6 KLD Engineering, P.C.  Wildfire Egress Study  Rev. 0  Table 7‐1.  Time to Clear the Indicated Area of 90 Percent of the Affected Population     Summer Fall  Midweek Weekend Midweek  Weekend Midweek Weekend Midweek  Weekend  Scenario: (1) (2) (3) (4) (5) (6)  Region Midday Midday Evening Midday Midday Evening  R01 – EMZ 1 1:55 1:45 1:40 1:55 1:45 1:40  R02 – EMZ 2 1:55 1:50 1:45 1:55 1:50 1:45  R03 – EMZ 3 1:40 1:50 1:45 1:35 1:50 1:45  R04 – EMZ 4 2:00 1:55 1:55 2:00 1:55 1:55  R05 – EMZ 5 1:30 1:25 1:20 1:30 1:30 1:20  R06 – EMZ 6 1:50 1:50 1:50 1:45 1:50 1:50  R07 – EMZ 7 1:50 1:50 1:50 1:50 1:50 1:50  R08 – EMZ 8 1:50 1:55 1:50 1:50 1:55 1:50  R09 – EMZ 9 1:55 1:50 1:50 1:55 1:50 1:50  R10 – EMZ 10 1:55 1:55 1:55 1:55 1:55 1:55  R11 ‐ Western Ashland 1:50 1:50 1:45 1:35 1:50 1:45  R12 ‐ Eastern Ashland 1:50 1:50 1:50 1:55 1:50 1:50  R13 ‐ Northern Ashland 2:00 1:55 1:50 2:00 1:55 1:50  R14 ‐ Central Ashland 1:45 1:50 1:45 2:30 1:50 1:45  R15 ‐ Southern Ashland 2:05 1:55 1:55 2:45 1:55 1:55  R16 ‐ Northern and Central  Ashland 1:55 1:50 1:50 2:30 1:50 1:50  R17 ‐ Southern and Central  Ashland 1:55 1:50 1:50 1:50 1:50 1:50  R18 ‐ All EMZs 2:35 2:25 2:15 3:10 2:25 2:20                       City of Ashland ES‐7 KLD Engineering, P.C.  Wildfire Egress Study  Rev. 0  Table 7‐2.  Time to Clear the Indicated Area of 100 Percent of the Affected Population     Summer Fall  Midweek Weekend Midweek  Weekend Midweek Weekend Midweek  Weekend  Scenario: (1) (2) (3) (4) (5) (6)  Region Midday Midday Evening Midday Midday Evening  R01 – EMZ 1 4:00 4:00 4:00 4:00 4:00 4:00  R02 – EMZ 2 4:00 4:00 4:00 4:00 4:00 4:00  R03 – EMZ 3 4:00 4:00 4:00 4:00 4:00 4:00  R04 – EMZ 4 4:00 4:00 4:00 4:00 4:00 4:00  R05 – EMZ 5 4:00 4:00 4:00 4:00 4:00 4:00  R06 – EMZ 6 4:00 4:00 4:00 4:00 4:00 4:00  R07 – EMZ 7 4:00 4:00 4:00 4:00 4:00 4:00  R08 – EMZ 8 4:00 4:00 4:00 4:00 4:00 4:00  R09 – EMZ 9 4:00 4:00 4:00 4:00 4:00 4:00  R10 – EMZ 10 4:00 4:00 4:00 4:00 4:00 4:00  R11 ‐ Western Ashland 4:00 4:00 4:00 4:00 4:00 4:00  R12 ‐ Eastern Ashland 4:00 4:00 4:00 4:00 4:00 4:00  R13 ‐ Northern Ashland 4:00 4:00 4:00 4:00 4:00 4:00  R14 ‐ Central Ashland 4:00 4:00 4:00 4:00 4:00 4:00  R15 ‐ Southern Ashland 4:00 4:00 4:00 4:00 4:00 4:00  R16 ‐ Northern and Central  Ashland 4:00 4:00 4:00 4:00 4:00 4:00  R17 ‐ Southern and Central  Ashland 4:00 4:00 4:00 4:00 4:00 4:00  R18 ‐ All EMZs 4:00 4:00 4:00 4:00 4:00 4:00            City of Ashland ES‐8 KLD Engineering, P.C.  Wildfire Egress Study  Rev. 0    Figure 8‐7. Combined Access Impaired Neighborhoods   City of Ashland ES‐9 KLD Engineering, P.C.  Wildfire Egress Study  Rev. 0  Table 9‐1.  Summary of Transportation Needs   Transportation  Resource Buses  Wheelchair  Buses Ambulances  Resources Available  Ashland School District 19 0 0  Ashland Fire & Rescue 0 0 2  Jackson County Fire District 0 0 2‐4*  TOTAL: 19 0 2  Resources Needed  Medical Facilities (Table 3‐7): 6 6 32  Schools (Table 3‐9): 75 0 0  Transit‐Dependent Population (Table 11‐1): 4 0 0  TOTAL TRANSPORTATION NEEDS: 85 6 32  *Note: 2‐4 Ambulances can be made available from Jackson County Fire Department in the case that more are needed.                City of Ashland 1‐1 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  1 INTRODUCTION  This section provides an introduction of the study and an overview of the process used to  compute the evacuation time estimates (ETE) for the City of Ashland, including preliminary  activities of the project.  This study analyzed traffic conditions and evacuation times for a variety of evacuation scenarios  of the City of Ashland.  Alternative emergency management strategies that could be used in  response to an evacuation of the City of Ashland were also examined.  This study, and the  results contained within this report, will further inform the City of Ashland’s emergency  planning and protective action decision making.  In the performance of this effort, guidance is provided by documents published by Federal and  State Governmental agencies. The nuclear industry is highly regulated and offers a number of  resources for developing evacuation studies.  Very few such documents exist for wildfire  hazards.  While the hazard is different, much of the concepts of evacuation (warning time,  smaller/isolated communities, lower density roadway networks, etc.) are appliable.  As such,  most of the references used in this study have been published by the US Nuclear Regulatory  Commission (NRC).  Most important of these are:  • Title 10, Code of Federal Regulations, Appendix E to Part 50 (10CFR50), Emergency  Planning and Preparedness for Production and Utilization Facilities, NRC, 2011.  • Criteria for Development of Evacuation Time Estimate Studies, NUREG/CR‐7002,  November 2011.  • Criteria for Preparation and Evaluation of Radiological Emergency Response Plans  and Preparedness in Support of Nuclear Power Plants, NUREG 0654/FEMA REP 1,  Rev. 1, November 1980.   • Analysis of Techniques for Estimating Evacuation Times for Emergency Planning  Zones, NUREG/CR 1745, November 1980.  The work effort reported herein was supported and guided by local stakeholders who  contributed suggestions, critiques, and the local knowledge base required. Table 1‐1 presents a  summary of stakeholders and interactions.  1.1 Overview of the ETE Process  The following outline presents a brief description of the work effort in chronological sequence:  1. Information Gathering:  a. Defined the scope of work in discussions with representatives from the City  of Ashland.  b. Attended meetings with local stakeholders to define methodology.    City of Ashland 1‐2 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  c. Conducted a detailed field survey of the highway system and of area traffic  conditions within the Emergency Management Zones (EMZs) and Shadow  Region1.  d. Obtained demographic data from the 2010 Census. Projected the 2010  Census data to the year 2020 (see Section 3.1).  e. Estimated the number of non‐EMZ employees using data obtained from the  US Census Longitudinal Employer‐Household Dynamics from the OnTheMap  Census analysis tool (see Section 3.4).  f. Conducted a random sample demographic survey of EMZ residents.   g. Obtained data (to the extent available) to update the database of schools,  colleges, medical facilities, tourist attractions, recreational facilities, and  transportation resources available. Majority of this data was provided by the  City supplemented with internet searches.   2. Estimated distribution of trip generation times representing the time required by  various population groups (permanent residents, employees, and tourists) to  prepare for the evacuation trip (mobilize) and updated where necessary. These  estimates were based upon the demographic survey results and notification time  calculation (see Section 5 and Appendix F).  3. Defined Evacuation Scenarios.  These scenarios reflect the variation in demand  associated with different seasons, day of week, and time of day.  The scenarios  selected were bound by the normal wildfire season.  4. Created Evacuation Regions.  “Regions” are individual or groups of EMZs for which  ETE are calculated.  The configurations of these Regions reflect evacuation of each  EMZ and a combination of EMZs (see Appendix G).  5. Estimated demand for transit services for persons at special facilities and for transit‐ dependent persons.  6. Identified and mapped access impaired neighborhoods in and around the City of  Ashland wherein there are medium to high population densities, high wildfire risk,  and limited means of egress.    7. Prepared the input streams for the DYNEV II system which computes ETE (see  Appendices B and C).  a. Estimated the evacuation traffic demand, based on the available information  derived from Census data, from data provided by local agencies, and from  the demographic survey.  b. Created the link‐node representation of the evacuation network, which was    1 An evacuation in the shadow region occurs when residents voluntarily evacuate from areas beyond the area officially given the evacuation order. This phenomenon can cause unwanted congestion and increase clearance times for people in the areas of actual risk.   City of Ashland 1‐3 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  used as the basis for the computer analysis that calculates the ETE.  c. Applied the procedures specified in the 2016 Highway Capacity Manual  (HCM2) to the data acquired during the field survey, to estimate the capacity  of all highway segments comprising the evacuation routes.  d. Calculated the evacuating traffic demand for each Region and for each  Scenario.  e. Specified selected candidate destinations for each “origin” (location of each  “source” where evacuation trips are generated over the mobilization time) to  support evacuation travel consistent with outbound movement relative to  the location of the wildfire.  8. Executed the DYNEV II model to determine optimal evacuation routing and compute  ETE for all residents, tourists and employees (“general population”) with access to  private vehicles. Generated a complete set of ETE for all specified Regions and  Scenarios.  9. Identified Traffic Control Points (TCP) and Access Control Points (ACP) within the  study area. See Section 10.  10. Calculated the ETE for all transit activities including those for special facilities  (schools and medical facilities) and for the transit‐dependent population.  11. Documented ETE results.  12. Considered two additional cases to represent bounding conditions for possible  wildfire scenarios:    a. A case wherein the fire is originating from the north and traveling southbound  toward the City of Ashland.  In this case, all evacuees are forced to evacuate to  the south.     b. A case wherein the fire is originating from the south and traveling northbound  toward the City of Ashland.  In this case, all evacuees are forced to evacuate to  the north.     13. Tested what‐if scenarios to evaluate alternative management strategies that could  be used in response to wildfire situations.  1.2 Location of the Study Area   The City of Ashland is located in Jackson County, Oregon, approximately 14 miles southeast of  Medford, OR. Figure 1‐1 displays the area surrounding the EMZs.  This map identifies the major  roadways and Shadow Region as well.    2 Highway Capacity Manual (HCM 2016), Transportation Research Board, National Research Council, 2016.     City of Ashland 1‐4 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  1.3 Preliminary Activities  These activities are described below.  Field Surveys of the Highway Network  KLD personnel drove the entire highway system within the EMZ and the Shadow Region. The  Shadow Region considered for the City of Ashland ETE was defined as the area beyond the EMZ  including the City of Talent.  The Shadow Region is bounded by the northern city limit of Talent  to the north, the ridge line and the United States Forest Service (USFS) border to the west, a  horizontal line connecting the USFS border to Emigrant Lake to the south, and the ridge line to  the east, shown in Figure 1‐1.  The characteristics of each section of highway were recorded.   These characteristics are shown in Table 1‐2.  Video and audio recording equipment were used to capture a permanent record of the highway  infrastructure. No attempt was made to meticulously measure such attributes as lane width  and shoulder width; estimates of these measures based on visual observation and recorded  images were considered appropriate for the purpose of estimating the capacity of highway  sections. For example, Exhibit 15‐7 in the HCM indicates that a reduction in lane width from 12  feet (the “base” value) to 10 feet can reduce free flow speed (FFS) by 1.1 mph – not a material  difference – for two‐lane highways. Exhibit 15‐46 in the HCM shows little sensitivity for the  estimates of Service Volumes at Level of Service (LOS) E (near capacity), with respect to FFS, for  two‐lane highways.  The data from the audio and video recordings were used to create detailed geographic  information systems (GIS) shapefiles and databases of the roadway characteristics and of the  traffic control devices observed during the road survey; this information was referenced while  preparing the input stream for the DYNEV II System.  As documented on page 15‐6 of the HCM 2016, the capacity of a two‐lane highway is 1700  passenger cars per hour in one direction.  For freeway sections, a value of 2250 vehicles per  hour per lane is assigned, as per Exhibit 12‐37 of the HCM 2016.  The road survey has identified  several segments which are characterized by adverse geometrics (steep hills and tight curves  with no shoulders) on two‐lane highways which are reflected in reduced values for both  capacity and speed. These estimates are consistent with the service volumes for LOS E  presented in HCM Exhibit 15‐46.  These links may be identified by reviewing Appendix H.  Link  capacity is an input to DYNEV II which computes the ETE.  Further discussion of roadway  capacity is provided in Section 4 of this report.  Traffic signals are either pre‐timed (signal timings are fixed over time and do not change with  the traffic volume on competing approaches) or are actuated (signal timings vary over time  based on the changing traffic volumes on competing approaches). Actuated signals require  detectors to provide the traffic data used by the signal controller to adjust the signal timings.   These detectors are typically magnetic loops in the roadway, or video cameras mounted on the  signal masts and pointed toward the intersection approaches. If detectors were observed on  the approaches to a signalized intersection during the road survey, detailed signal timings were    City of Ashland 1‐5 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  not collected as the timings vary with traffic volume. Traffic Control Points at locations which  have control devices are represented as actuated signals in the DYNEV II system.  If no detectors were observed, the signal control at the intersection was considered pre‐timed,  and detailed signal timings were gathered for several signal cycles. These signal timings were  input to the DYNEV II system used to compute ETE.  Figure 1‐2 presents the link‐node analysis network that was constructed to model the  evacuation roadway network in the EMZ and Shadow Region. The directional arrows on the  links and the node numbers have been removed from Figure 1‐2 to clarify the figure. The  detailed figures provided in Appendix H depict the analysis network with directional arrows  shown and node numbers provided.  The observations made during the field survey along with  aerial imagery were used to calibrate the analysis network.   Demographic Survey  A demographic survey was performed to gather information needed for the evacuation study.   Appendix F presents the survey instrument, the procedures used, and tabulations of data  compiled from the survey returns.   This data was utilized to develop estimates of vehicle occupancy to estimate the number of  evacuating vehicles during an evacuation and to estimate elements of the mobilization process.   This database was also referenced to estimate the number of transit‐dependent people.    Computing the Evacuation Time Estimates  The overall study procedure is outlined in Appendix D. Demographic data was obtained from  several sources, as detailed later in this report.  These data were analyzed and converted into  vehicle demand data. The vehicle demand was loaded onto appropriate “source” links of the  analysis network using GIS mapping software. The DYNEV II system was then used to compute  ETE for all Regions and Scenarios.  Analytical Tools  The DYNEV II System5 that was employed for this study is comprised of several integrated  computer models. One of these is the DYNEV (DYnamic Network EVacuation) macroscopic  simulation model, a new version of the IDYNEV model that was developed by KLD under  contract with the Federal Emergency Management Agency (FEMA).  DYNEV II consists of four sub‐models:   A macroscopic traffic simulation model (for details, see Appendix C).     5 The models of the IDYNEV System were recognized as state of the art by the Atomic Safety & Licensing Board (ASLB) in past hearings. (Sources: Atomic Safety & Licensing Board Hearings on Seabrook and Shoreham; Urbanik). The models have continuously been refined and extended since those hearings and were independently validated by a consultant retained by the NRC. The new DYNEV II model incorporates the latest technology in traffic simulation and in dynamic traffic assignment. (Urbanik, T., et. al. Benchmark Study of the I-DYNEV Evacuation Time Estimate Computer Code, NUREG/CR-4873, Nuclear Regulatory Commission, June, 1988.)    City of Ashland 1‐6 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0   A Trip Distribution (TD) model that assigns a set of candidate destination (D) nodes for  each “origin” (O) located within the analysis network, where evacuation trips are  “generated” over time.  This establishes a set of O‐D tables.   A Dynamic Traffic Assignment (DTA) model which assigns trips to paths of travel (routes)  which satisfy the O‐D tables, over time.  The TD and DTA models are integrated to form  the DTRAD (Dynamic Traffic Assignment and Distribution) model, as described in  Appendix B.   A Myopic Traffic Diversion model which diverts traffic to avoid intense, local congestion,  if possible.  Another software product developed by KLD, named UNITES (UNIfied Transportation  Engineering System) was used to expedite data entry and to automate the production of output  tables.  The dynamics of traffic flow over the network are graphically animated using the software  product, EVAN (EVacuation ANimator), developed by KLD. EVAN is GIS based and displays  statistics such as LOS, vehicles discharged, average speed, and percent of vehicles evacuated,  output by the DYNEV II System. The use of a GIS framework enables the user to zoom in on  areas of congestion and query road name, town name and other geographic information.   The procedure for applying the DYNEV II System within the framework of developing ETE is  outlined in Appendix D.  Appendix A is a glossary of terms.  For the reader interested in an evaluation of the original model, I‐DYNEV, the following  references are suggested:   NUREG/CR‐4873 – Benchmark Study of the I‐DYNEV Evacuation Time Estimate  Computer Code.   NUREG/CR‐4874 – The Sensitivity of Evacuation Time Estimates to Changes in Input  Parameters for the I‐DYNEV Computer Code.  The evacuation analysis procedures are based upon the need to:   Route traffic along paths of travel that will expedite their travel from their respective  points of origin to points outside the evacuation region.   Restrict movement toward the wildfire to the extent practicable and disperse traffic  demand so as to avoid focusing demand on a limited number of highways.   Move traffic in directions that are generally outbound relative to the location of the  wildfire.  DYNEV II provides a detailed description of traffic operations on the evacuation network. This  description enables the analyst to identify bottlenecks and to develop countermeasures that  are designed to represent the behavioral responses of evacuees.  The effects of these  countermeasures may then be tested with the model.       City of Ashland 1‐7 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Table 1‐1.  Stakeholder Interaction  Stakeholder Nature of Stakeholder Interaction  City of Ashland Police Department Attended meetings and engaged in  correspondence to define methodology and data  requirements.  Assisted in data collection.  Reviewed and discussed all study assumptions.  City of Ashland Fire Department  City of Ashland Chamber of Commerce  Southern Oregon University (SOU) Attended kick off meeting.  Provided SOU data.      Table 1‐2.  Highway Characteristics   Number of lanes  Posted speed   Lane width  Actual free speed   Shoulder type & width  Abutting land use   Interchange geometries  Control devices   Lane channelization & queuing  capacity (including turn bays/lanes)   Intersection configuration (including  roundabouts where applicable)   Geometrics:  curves, grades (>4%)  Traffic signal type   Unusual characteristics:  Narrow bridges, sharp curves, poor pavement, flood warning  signs, inadequate delineations, toll booths, etc.        City of Ashland 1‐8 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0      Figure 1‐1.  Study Area Location    City of Ashland 1‐9 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure 1‐2.  Study Area Link‐Node Analysis Network  City of Ashland 2-1 KLD Engineering, P.C. Evacuation Time Estimate Study Rev. 0 2 STUDY ESTIMATES AND ASSUMPTIONS This section discusses the data estimates and project assumptions utilized in this study. These assumptions were discussed with representatives from the City of Ashland Police Department. An assumptions memorandum documenting all the project assumptions was reviewed and approved by stakeholders from the City of Ashland prior to their use in this study. 2.1 Data Estimates 1. The estimate of permanent resident population was based upon the 2010 U.S. Census population data from the Census Bureau website1 extrapolated to November 2020 using annual growth rates that were computed from the 2019 Census population estimates (see Section 3.1). 2. Estimates of employees who reside outside the EMZ and commute to work within the EMZ were based upon data obtained from the US Census Longitudinal Employer- Household Dynamics from the OnTheMap Census analysis tool2. 3. Population estimates at tourist and special facilities were based on the data received from the City of Ashland Police Department and internet searches (see Sections 3.1.2, 3.3, 3.5 and 3.7). 4. Evacuee mobilization times were based on a statistical analysis of data acquired from a random sample demographic survey of the EMZ residents conducted in August 2020 (documented in Section 5 and Appendix F). 5. The relationship between permanent resident population and evacuating vehicles was extracted from the demographic survey. Average values of 2.23 persons per household (Figure F-1) and 1.43 evacuating vehicles per household (Figure F-10) were used for permanent resident population. The relationship between persons and vehicles for other population groups in the EMZs is as follows: a. Employees: 1.06 employees per vehicle (demographic survey results) for all major employers. b. Tourists Population Data (Vehicle Occupancy Average is 2.29 tourists per vehicle; see Section 3.3 and Appendix E for additional information): i. Lodging Facilities: Operate at maximum capacity during peak times and have an average vehicle occupancy of 2.23 persons per vehicle. ii. Other tourist facilities: Vehicle occupancy varies between 1.00 and 3.57 persons per vehicle. iii. It was assumed that parking lots are full at peak times, and if no data was provided, it was assumed that the vehicle occupancy rate is equal to the average household size, 2.23 persons per vehicle. 6. Roadway capacity estimates were based on field surveys performed in July 2020 and the application of the Highway Capacity Manual 2016. 1 www.census.gov 2 http://onthemap.ces.census.gov/ City of Ashland 2-2 KLD Engineering, P.C. Evacuation Time Estimate Study Rev. 0 2.2 Study Methodological Assumptions 1. A total of 6 “Scenarios” representing different temporal variations (season, time of day, day of week) and conditions were considered. These Scenarios are outlined in Table 2-1. 2. Three different wildfire events were considered. The first wildfire evacuation scenario allows evacuees to travel in any direction. The second wildfire event forces all evacuees to evacuate towards the south due to a fire originating in the north and traveling southbound towards the City of Ashland. The third event forces all evacuees to evacuate towards the north due to a fire originating in the south and moving northbound towards the City of Ashland. 3. Several sensitivity studies were conducted to determine the elasticity of the evacuation time estimates based on the notification time distribution. 4. The notification time distribution (the time required for evacuees to receive notification of an evacuation) is based on the results of the demographic survey. See Section 5.3 for the notification distribution that is used in this study. 5. The Shadow Region was defined as the area beyond the EMZ including the City of Talent. The Shadow Region is bounded by the northern city limit of Talent to the north, the ridge line and the United States Forest Service (USFS) border to the west, a horizontal line connecting the USFS border to Emigrant Lake to the south, and the ridge line to the east, see Figure 3-2. 6. The DYNEV II System was used to compute ETE in this study. 7. Evacuees will drive safely, travel away from the wildfire to the extent practicable given the highway network, and obey all control devices and traffic guides. 8. Evacuation movements (paths of travel) are generally outbound relative to the wildfire to the extent permitted by the highway network. All major evacuation routes were used in the analysis. 2.3 Study Assumptions 1. The Planning Basis Assumption for the calculation of ETE is a rapidly escalating hazard that requires immediate evacuation, and includes the following: a. Advisory to evacuate is announced coincident with local emergency alerts (NIXLE Citizen Alert, social media, local news and similar communication systems). b. Mobilization of the general population will commence within 15 minutes after the emergency alerts. c. ETE are measured relative to the advisory to evacuate. 2. One hundred percent (100%) of the people told to evacuate, will do so. 3. Approximately six percent (6%) of the population within the Shadow Region and within the EMZ not advised to evacuate will voluntarily evacuate based on the results of the demographic survey performed within the EMZ. 4. Buses will be used to transport those without access to private vehicles: a. Schools and childcare facilities3 3 Elementary, Middle, and High schools were considered Schools. Anything pre-elementary level was considered a childcare facility. City of Ashland 2-3 KLD Engineering, P.C. Evacuation Time Estimate Study Rev. 0 i. It was assumed that parents will pick up children at childcare facilities (pre-elementary schools) prior to evacuation. ii. School bus demand was computed for all schools based on enrollment for emergency planning purposes regardless of whether or not parents will pick up school children prior to evacuating. This will result in a more conservative estimate of buses and evacuating vehicles. iii. Schoolchildren, if school is in session, are given priority in assigning transit vehicles. b. Medical Facilities i. Buses, wheelchair transport vehicles and ambulance will be used to evacuate patients at medical facilities. c. Transit dependent permanent residents: i. Transit dependent general population will be evacuated by bus. ii. Homebound special needs population are included in the transit dependent population and will be evacuated by bus. iii. Households with 3 or more vehicles were assumed to have no need for transit vehicles. 5. Transit vehicle capacities and maximum speed limits: a. School buses – the study assumed 60 students per bus for elementary school students, 40 students per bus for middle school and high school students. b. Ambulatory transit-dependent persons, included college students, and medical facility patients = 30 people per bus. c. Basic Life Support (BLS) (ambulances) = 2 persons. d. Wheelchair transport vehicles – the study assumed 15 persons per wheelchair bus and 4 persons per wheelchair van. e. The maximum bus speed assumed is 55 miles per hour, based on the 2019 Oregon Pupil Transportation Manual4. 6. It is assumed all transit vehicles will arrive at the facilities to be evacuated within 90 minutes of the advisory to evacuate. 7. Transit Vehicle loading times: a. School buses will be loaded in 15 minutes. b. Transit Dependent buses will require 1 minute of loading time per passenger. c. Buses for medical facilities will require 1 minute of loading time per ambulatory passenger. d. Wheelchair transport vehicles for medical facilities will require 5 minutes of loading time per passenger. e. Ambulances for medical facilities will require 30 minutes per bedridden passenger. 8. The percent breakdown of ambulatory (50%), wheelchair bound (25%) and bedridden patients (25%) was applied to total populations provided at Asante Ashland Community 4 https://www.oregon.gov/ode/schools-and-districts/ptf/Documents/OPTM%202018%20Draft%20Final.pdf City of Ashland 2-4 KLD Engineering, P.C. Evacuation Time Estimate Study Rev. 0 Hospital, Linda Vista Nursing & Rehab Center and Ashland Surgery Center, accounting for rounding errors. 9. It was assumed that drivers for all transit vehicles identified in Table 9-1 are available. 10. Approximately eighty-eight percent (88%) of transit-dependent population will rideshare with a neighbor or friend, based on the demographic survey results. 11. Vehicles will be traveling through the study area (external-external trips) at the start of a wildfire. After the advisory to evacuate is announced, these pass-through travelers will also evacuate. External traffic vehicles will utilize Pacific Highway (I-5) to pass through the area. Dynamic and variable message signs will be strategically positioned outside of the hazard area at logical diversion points to attempt to divert traffic away from these routes. As such, it was assumed this pass-through (external) traffic will diminish over time with all external traffic flow stopping at 2 hours after the advisory to evacuate. 12. Access control will be implemented on I-5 during an emergency in Ashland. The access control will be implemented over the course of 2 hours to allow police to mobilize personnel and equipment to block the roadways and to allow time for commuters to return home and unite with family (see Section 3.8). 13. Traffic Control Points (TCP) were considered in this analysis. TCPs were considered at locations that benefit the evacuation during the analysis period. Their number and location will depend on the Region to be evacuated and resources available. The objectives of these TCPs are: a. Facilitate the movements of all (mostly evacuating) vehicles at the location. b. Discourage inadvertent vehicle movements towards the wildfire. c. Provide assurance and guidance to any traveler who is unsure of the appropriate actions or routing. d. Act as local surveillance and communications center. e. Provide information to the county and other emergency workers as needed, based on direct observation or on information provided by evacuees. 14. External Traffic was estimated to be reduced by 60% during evening scenarios (Scenario 3 and 6). 15. This study does not assume that roadways are empty at the start of the first time period. Rather, there is a 30-minute initialization period (often referred to as “fill time in traffic simulation) wherein the traffic volumes from the first time period were loaded onto roadways in the study area. The amount of initialization/fill traffic that is on the roadways in the study area at the start of the first time period depends on the scenario and the region being evacuated. 16. Based on the results of the demographic survey, 36 percent of the households in the EMZ have at least 1 commuter; 39 percent of those households will await the return of household members before beginning their evacuation trip, based on the demographic survey results. Therefore, 14 percent (36% x 39% = 14%) of households will await the return of household members, prior to beginning their evacuation trip. City of Ashland 2-5 KLD Engineering, P.C. Evacuation Time Estimate Study Rev. 0 Table 2-1. Evacuation Scenario Definitions Scenarios Season6 Day of Week Time of Day 1 Summer Midweek Midday 2 Summer Weekend Midday 3 Summer Midweek, Weekend Evening 4 Fall Midweek Midday 5 Fall Weekend Midday 6 Fall Midweek, Weekend Evening 6 Fall means that school is in session at normal enrollment levels. Summer means that school is in session at summer school enrollment levels (lower than normal enrollment).   City of Ashland 3‐1 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0  3 DEMAND ESTIMATION  This section discusses the estimates of demand, expressed in terms of people and vehicles,  which constitute a critical element in developing an evacuation plan. This section also  documents these sources of data, as well as the methodology used to extract relevant data  from these sources.   These estimates consist of three components:  1. An estimate of population within the Emergency Management Zones (EMZ), stratified  into groups (e.g., resident, employee, tourists, special facilities, etc.).  2. An estimate, for each population group, of mean occupancy per evacuating vehicle. This  estimate is used to determine the number of evacuating vehicles.  3. An estimate of potential double‐counting of vehicles.  Appendix E presents much of the source material for the population estimates. Our primary  source of population data, the 2010 Census, however, is not adequate for directly estimating  some tourists.  Throughout the year, vacationers and tourists enter the EMZ. These non‐residents may dwell  within the EMZ for a short period (e.g., a few days or one or two weeks), or may enter and  leave within one day. Estimates of the size of these population components must be obtained,  so that the associated number of evacuating vehicles can be ascertained.   The potential for double‐counting people and vehicles must be addressed. For example:   A resident who works and shops within the EMZ could be counted as a resident, again as  an employee and once again as a shopper.   A visitor who stays at a hotel and spends time at a park, then goes shopping could be  counted three times.  Furthermore, the number of vehicles at a location depends on time of day. For example, motel  parking lots may be full at dawn and empty at noon. Similarly, parking lots at area parks, which  are full at noon, may be almost empty at dawn. Estimating counts of vehicles by simply adding  up the capacities of different types of parking facilities will tend to overestimate the number of  tourists and can lead to ETE that are too conservative.  Analysis of the population characteristics of the study area indicates the need to identify three  distinct groups:   Permanent residents ‐ people who are year‐round residents of the EMZ.   Tourists ‐ people who reside outside of the EMZ who enter the area for a specific  purpose (shopping, recreation) and then leave the area.   Employees ‐ people who reside outside of the EMZ and commute to work within the  EMZ on a daily basis.   Estimates of the population and number of evacuating vehicles for each of the population  groups are presented for each EMZ. The EMZ boundaries are shown in Figure 3‐1.    City of Ashland 3‐2 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0  3.1 Permanent Residents  The primary source for estimating permanent population is the latest U.S. Census data. The U.S.  Census Bureau conducts a physical census of the permanent resident population in the U.S.  every ten years. The last census began on April 1, 2010 with data from the census being  published on April 1, 2011. In the years between the decennial censuses, the Census Bureau  works with state and local agencies to provide annual population estimates at the state and  local levels. These estimates are done using data on deaths, births and migration. This annual  data gathering process and analysis is extensive. As such, population estimates are a year  behind – 2019 data are released in 20201.   This study is based on 2010 Census population data from the Census Bureau website2  extrapolated to 2020 using annual growth rates computed from the 2019 Census population  estimates as outlined in the methodology below.   The Census Bureau QuickFacts3 website provides annual population estimates for each state,  county, and municipality4 in the United States. As discussed above, Census population  estimates are a year behind. Thus, the most recent population estimates available for the  counties and municipalities are for the time period from April 1, 2010 to July 1, 2019. The  population change and annual growth rate for each county and municipality in the study area  (the EMZ plus Shadow Region) are provided in Table 3‐1 and Table 3‐2, respectively. Figure 3‐2  shows the county and municipality boundaries identified by the Census Bureau.  The permanent resident population, as per the 2010 Census, for the EMZ and the Shadow  Region was projected to 2020 using the compound growth formula (Equation 1). In the  compound growth formula, g is the annual growth rate and X is the number of years projected  forward from Year 2010. The compound growth formula can be solved for g as shown in  Equation 2.  Equation 1  ሺ𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝐺𝑟𝑜𝑤𝑡ℎ 𝑓𝑜𝑟 𝑋 𝑦𝑒𝑎𝑟𝑠ሻ: 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 201𝑋 ൌ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 2010 ሺ1 ൅ 𝑔ሻ ௫ Equation 2  ሺ𝑆𝑜𝑙𝑣𝑖𝑛𝑔 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑎𝑛𝑛𝑢𝑎𝑙 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒ሻ: 𝑔ൌ ሺ𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 201𝑋 ൊ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 2010ሻଵ/௫ – 1    The 2010 and 2019 population data provided in Table 3‐1 and Table 3‐2 were used in Equation  2 to compute the annual growth rate for each county and municipality in the study area using X  = 9.25 (9 years and 3 months from April 1, 2010 to July 1, 2019). The computed annual growth  rate for each county and municipality is summarized in the final column of Table 3‐1 and Table  3‐2, respectively.    1 The schedule for release of Census data is provided on the Census website: https://www.census.gov/programs- surveys/popest/about/schedule.html 2 www.census.gov 3 https://www.census.gov/quickfacts/fact/table/US/PST045218 4 https://www.census.gov/data/datasets/time-series/demo/popest/2010s-total-cities-and-towns.html   City of Ashland 3‐3 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0  The most detailed data should always be used when forecasting population. In terms of  detailed data, municipal data is the finest level of detail, then county data, and state data. The  municipality growth rate was used first and if that was not available or applicable within the  study area, then the county growth rate was used. County growth rates are available for the  entire study area and were used (in the absence of municipal data) as they are the finest level  of detail available for the entire study area. Thus, state data was not used.  The Census Bureau does not provide population data specific to the boundaries of the study  area. As such, the county or municipality population was used to compute the annual growth  rate. Then, the appropriate municipality or county growth rate was applied only to those  Census blocks located within the study area. All other blocks outside of the study area were not  considered as part of the EMZ or Shadow Region population, even if they are located within  one of the municipalities or counties that intersect the study area.   The appropriate annual growth rate was applied to each Census block in the study area  depending on which county or municipality the block is located within. The population was  extrapolated to November 1, 2020 using Equation 1 with X = 10.58 (10 years and 7 months from  the April 1, 2010 Census date to November 1, 2020), as the base year for this study.  The permanent resident population is estimated by cutting the census block polygons by the  EMZ boundaries. A ratio of the original area of each census block and the updated area (after  cutting) is multiplied by the total block population to estimate what the population is within the  EMZ. This methodology (referred to as the “area ratio method”) assumes that the population is  evenly distributed across a census block. Table 3‐3 provides the permanent resident population  within the EMZ for 2010 (based on the most recent U.S. Census) and for 2020 (based on the  methodology above). As indicated, the permanent resident population within the EMZ has  increased by approximately 6.83% since the 2010 Census.  The 2020 extrapolated permanent resident population is divided by the average household size  and then multiplied by the average number of evacuating vehicles per household to estimate  number of vehicles. The average household size (2.23 persons/household) was estimated using  the demographic survey results (see Appendix F, sub‐section F.3.1). The number of evacuating  vehicles per household (1.43 vehicles/household – See Appendix F, sub‐section F.3.2) was also  adapted from the demographic survey results. Permanent resident population and vehicle  estimates are presented in Table 3‐4.   It can be argued that this estimate of permanent residents overstates, somewhat, the number  of evacuating vehicles, especially during the summer. It is certainly reasonable to assert that  some portion of the population would be on vacation during the summer and would travel  elsewhere. A rough estimate of this reduction can be obtained as follows:   Assume 50 percent of all household’s vacation for a two‐week period over the summer.   Assume these vacations, in aggregate, are uniformly dispersed over 10 weeks, i.e. 10  percent of the population is on vacation during each two‐week interval.    Assume half of these vacationers leave the area.     City of Ashland 3‐4 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0  On this basis, the permanent resident population would be reduced by 5 percent in the summer  and by a lesser amount in the off‐season. Given the uncertainty in this estimate, we elected to  apply no reductions in permanent resident population for the summer scenarios to account for  residents who may be out of the area.  3.1.1 Special Facilities  Three medical facilities are located within the EMZ (see Table E‐2). These facilities have  permanent residents that are included in the Census; however, these facilities are transit  dependent (will not evacuate in personal vehicles) and are addressed below in Section 3.5. As  such, these residents are included in the resident population, but no personal evacuating  vehicles are considered. The vehicles in Table 3‐4 have been adjusted accordingly.  3.1.2 University Students  Southern Oregon University (SOU) is the only university in the EMZ. Upon examination for  Census blocks in the vicinity of these campuses, it does not appear the resident students were  captured in the Census.  As such, no modifications to residents or resident vehicles were made  to account for this university.  Based on the data provided by the City of Ashland, some students will evacuate in private  vehicles while other students either rideshare with a fellow classmate or need transportation  assistance (a bus) to evacuate. The campuses are broken down as follows.   According to the city, the total enrollment of SOU is 5,000.   According to the National Application Center database5, 83% of students live off campus  and 17% of students live on campus.  Sixty (60%) of students who live on campus own  personal vehicles. Therefore, 4,150 (5,000 x 83%) students live off campus, 850 (5,000 x  17%) students live on campus, and 510 (850 x 60%) on campus students own personal  vehicles. In other words, 510 personal vehicles will be used by students living on campus  during an evacuation.    Based on the demographic survey results, the commuter vehicle occupancy is 1.06  persons per vehicle (see Appendix F, subsection F.3.1). Thus, the number of commuter  vehicles used by off‐campus students is 3,915 (4,150 ÷ 1.06).    The demographic survey results indicate 88% of the transit‐dependent people will  rideshare with a neighbor or friend (see Appendix F, subsection F.3.1). Apply this ratio to  the 340 (850 – 510) on‐campus students with no personal vehicles, resulting in 299 (340  x 88%) students who will rideshare to evacuate. In summary, the total number of on‐ campus students evacuated by personal vehicles is 809 (510 + 299). This leaves 41 (850  – 809) on‐campus students who are transit dependent and need buses to evacuate.    5 https://www.nationalapplicationcenter.com/gotocollege/campustour/undergraduate/4790/Southern_Oregon_University/Southern_Or egon_University5.html   City of Ashland 3‐5 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0   Using the capacity of 30 people per bus (see Section 2.3, Assumption 5), SOU needs 2  (41 ÷ 30 = 2, rounded up) transit‐dependent buses or 4 passage car equivalent (pce’s)  vehicles (1 bus is equivalent to 2 passenger vehicles).   In summary, 4,959 (809 + 4,150) commuter/ridesharing students will be evacuated in  4,425 (510 + 3,915) private vehicles, and 41 transit‐dependent students will be  evacuated in 2 buses.  3.2 Shadow Population  A portion of the population living outside the evacuation area, including the City of Talent, may  elect to evacuate without having been instructed to do so. Based on the demographic survey, it  is assumed that 6 percent of the permanent resident population, based on U.S. Census Bureau  data, in this Shadow Region will elect to evacuate.  Shadow population characteristics (household size, evacuating vehicles per household,  mobilization time) are assumed to be the same as that of the permanent resident population.  There are 10,099 permanent residents and 6,490 vehicles in the Shadow Region.  3.3 Tourist Population  Tourist population groups are defined as those people (who are not permanent residents, nor  commuting employees) who enter the EMZ for a specific purpose (shopping, recreation).  Tourists may spend less than one day or stay overnight at hotels and motels. Data was provided  by the City of Ashland for the majority of these facilities. For facilities wherein no data was  provided or data was not available at that time, parking lot spaces were used to estimate  facility capacities, see Section 2.1, Assumption 5b. Vehicle occupancy rates vary by facility from  1.00 persons per vehicle to 3.57 persons per vehicle. The EMZ has a number of areas and  facilities that attract tourists, including:    Golf Courses   Hiking Trails   Lodging Facilities    Theatres  There is one golf course within the EMZ. According to the city, both the average daily peak  attendance and parking capacity of this facility are 50. Therefore, an average of 1.00 person per  vehicle is assigned to this facility.   There are four hiking trails within the EMZ. The average number of daily hikers and parking  capacity for each hiking trail was provided by the city. There are limited parking spots for  Oredson Todd Woods and Acid Castle Boulders Access Point. It is assumed the hikers go hiking  in pairs (2.00 persons per vehicles) and their vehicles are parked in the nearby areas when the  parking spaces are fully occupied. A total of 1,435 tourists in 558 vehicles (an average of 2.57  persons per vehicle) are assigned to the hiking trails in the EMZ.    City of Ashland 3‐6 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0  There are fourteen lodging facilities within the EMZ. The average daily capacity for each lodging  facility was provided by the city. Assumed the tourists travel as groups of family member, the  average household size (2.23 persons/household) was used to estimate the tourist vehicles. A  total of 1,690 tourists in 758 vehicles (an average of 2.23 persons per vehicle) are assigned to  the lodging facilities in the EMZ.   According to the city, a theatre festival – Oregon Shakespeare Festival runs from February to  October each year. The average daily peak attendance is 2,500, and 21% of the visitors are  residents living within the EMZ. The remaining 1,975 (2,500 x 79%) visitors live outside of the  EMZ. Assuming these visitors attend the festival with family members, the average household  size (2.23 persons/household) was used to estimate the vehicles for the festival. Thus, 1,975  tourists in 886 vehicles (an average of 2.23 persons per vehicle) are assigned to the theatre.  Appendix E summarizes the tourist data that was estimated for the EMZ. Table E‐4 presents the  number of tourists visiting recreational facilities and lodging facilities within the EMZ.   In total, there are 5,150 tourists evacuating in 2,252 vehicles (an average of 2.29 tourists per  vehicle) in the study area. Table 3‐5 presents tourist population and vehicle estimates in the  study area.   3.4 Employees  Employees who work within the EMZ fall into two categories:   Those who live and work in the EMZ   Those who live outside of the EMZ and commute to jobs within the EMZ  Those of the first category are already counted as part of the permanent resident  population. To avoid double counting, we focus only on those employees commuting from  outside the EMZ who will evacuate along with the permanent resident population.  Data obtained from the US Census Longitudinal Employer‐Household Dynamics from the  OnTheMap Census analysis tool6 were used to estimate the number of employees commuting  into the EMZ. The latest Workplace Area Characteristic data available (2017), was also obtained  from this website and was used to determine the number of employees by Census Block within  the EMZ.   Since not all employees are working at facilities within the EMZ at one time, a maximum shift  reduction was applied. The Work Area Profile Report, also output by the OnTheMap  Application, breaks down jobs within the EMZ by industry sector. Assuming maximum shift  employment occurs Monday through Friday between 9 AM and 5 PM, the following jobs take  place outside the typical 9‐5 workday:   Manufacturing – 5.7% of jobs; takes place in shifts over 24 hours   Arts, Entertainment, and Recreation – 9.1% of jobs; takes place in evenings and on  weekends    6 http://onthemap.ces.census.gov/   City of Ashland 3‐7 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0   Accommodations and Food Services – 26.2% of jobs; peaks in the evenings  The maximum shift in the EMZ is about 59.0% (100% ‐ 5.7% ‐ 9.1% ‐ 26.2% = 59.0%). This value  was applied to the total employment in 2017 to represent the maximum number of employees  present in the EMZ at any one time. The Inflow/Outflow Report was then used to calculate the  percent of employees that work within the EMZ but live outside. This value, 66.8%, was applied  to the maximum shift employee values to compute the number of people commuting into the  EMZ to work at peak times. Table E‐3 in Appendix E summarizes the number of employees  commuting into the EMZ during the peak shift.  In Table 3‐6, a vehicle occupancy of 1.06 employees per vehicle obtained from the demographic  survey (See Appendix F, sub‐section F.3.1, “Commuter Travel Modes”) was used to determine  the number of evacuating employee vehicles for all major employers. Table 3‐6 presents  employee and vehicle estimates by EMZ.   3.5 Medical Facilities   The data for the three medical facilities was provided by the city. Table E‐2 in Appendix E  summarizes the data gathered. Table 3‐7 presents the current census and transportation  requirement of medical facilities in the EMZ. As shown in these tables, 250 people have been  identified as living in, or being treated in, these facilities.  Since the average number of patients  at medical facilities fluctuate daily, a percent breakdown of ambulatory, wheelchair bound, and  bedridden patients was used to estimate the number of each type of patient (see Section 2.3,  Assumption 8). The estimated breakdown for the three facilities consists of about 50%  ambulatory, 25% wheelchair bound, and 25% bedridden patients, accounting for rounding  errors. The number of ambulances is determined by assuming that 2 patients can be  accommodated per ambulance trip; the number of wheelchair buses assumes 15 wheelchairs  per trip, and the number of buses estimated assumes 30 ambulatory patients per trip (see  Section 2.3, Assumption 5).  3.6 Transit Dependent Population  The demographic survey results were used to estimate the portion of the population requiring  transit service:   • Those persons in households that do not have a vehicle available.  • Those persons in households that do have vehicle(s) that would not be available at  the time the evacuation is advised.  In the latter group, the vehicle(s) may be used by a commuter(s) who does not return (or is not  expected to return) home to evacuate the household.  Table 3‐8 presents estimates of transit‐dependent people.  Note:  • Estimates of persons requiring transit vehicles include schoolchildren.  For those  evacuation scenarios where children are at school when an evacuation is ordered,  separate transportation is provided for the schoolchildren. The actual need for    City of Ashland 3‐8 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0  transit vehicles by residents is thereby less than the given estimates.  However,  estimates of transit vehicles are not reduced when schools are in session.  • It is reasonable and appropriate to consider that many transit‐dependent persons  will evacuate by ride‐sharing with neighbors, friends or family.  For example, nearly  80 percent of those who evacuated from Mississauga, Ontario7 who did not use their  own cars, shared a ride with neighbors or friends.  Other documents report that  approximately 70 percent of transit dependent persons were evacuated via ride  sharing. The results from the demographic survey indicate approximately 88 percent  is appropriate for this area.  As such, 88 percent ride‐sharing was utilized to estimate  the transit dependent population within the EMZ.    The estimated number of bus trips needed to service transit‐dependent persons is based on an  estimate of average bus occupancy of 30 persons at the conclusion of the bus run.  Transit  vehicle seating capacities typically equal or exceed 60 children on average (roughly equivalent  to 40 adults). If transit vehicle evacuees are two thirds adults and one third children, then the  number of “adult seats” taken by 30 persons is 20 + (2/3 x10) = 27.   On this basis, the average  load factor anticipated is (27/40) x 100 = 68 percent.  Thus, if the actual demand for service  exceeds the estimates of Table 3‐8 by 50 percent, the demand for service can still be  accommodated by the available bus seating capacity.    ൤20 ൅ ൬2 3 ൈ 10൰൨ൊ40 ൈ 1.5 ൌ 1.00    Table 3‐8 indicates that transportation must be provided for 94 people. Therefore, a total of 4  buses are required to transport this population outside of the EMZ.  To illustrate this estimation procedure, we calculate the number of persons, P, requiring public  transit or ride‐share, and the number of buses, B, required for the EMZ:  𝑃ൌ𝑁𝑜.𝑜𝑓 𝐻𝐻 ൈ෍ሼሺ% 𝐻𝐻 𝑤𝑖𝑡ℎ 𝑖 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠ሻ ൈ ሾሺ𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐻𝐻 𝑆𝑖𝑧𝑒ሻ െ𝑖ሿሽ ௡ ௜ୀ଴ ൈ𝐴௜𝐶௜  Where,  A = Percent of households with commuters  C = Percent of households who will not await the return of a commuter    𝑃ൌ9,618 ൈ ሾ1.50 ൈ 0.0068 ൅ 0.3530 ൈ ሺ1.76 െ 1ሻ ൈ 0.3586 ൈ 0.6131 ൅ 0.4426 ൈ ሺ2.56 െ 2ሻ ൈ ሺ0.3582 ൈ 0.6131ሻଶሿ ൌ 780  𝐵ൌሺሺ1 െ 0.88ሻൈ𝑃ሻ ൊ 30 ൌ 4    7 1979 Mississauga Train Derailment   City of Ashland 3‐9 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0   These calculations are explained as follows:  • Number of households is computed by dividing the EMZ population (21,449) by the  average household size (2.23) and equates to 9,618.  • All members (1.50 avg.) of households (HH) with no vehicles (0.68%) will evacuate by  public transit or ride‐share.  The term 9,618 (number of households) x 1.50 x 0.0068,  accounts for these people.  • The members of HH with 1 vehicle (35.30%) away, who are at home, equal (1.76‐1).  The number of HH where the commuter will not return home is equal to (9,618 x  0.76 x 0.3530 x 0.3582 x 0.6131), as 35.82% of EMZ households have a commuter,  61.31% of which would not return home in the event of an emergency.  The number  of persons who will evacuate by public transit or ride‐share is equal to the product  of these two terms.  • The members of HH with 2 vehicles (44.26%) that are away, who are at home, equal  (2.56 – 2).  The number of HH where neither commuter will return home is equal to  9,618 x 0.4426 x 0.56 x (0.3582 x 0.6131)2. The number of persons who will evacuate  by public transit or ride‐share is equal to the product of these two terms (the last  term is squared to represent the probability that neither commuter will return).  • Households with 3 or more vehicles are assumed to have no need for transit  vehicles.  • The total number of persons requiring public transit is the sum of such people in HH  with 1 or 2 vehicles that are away from home and households with no vehicles.  It is assumed that homeless people and those with access and functional needs who may also  need assistance and do not reside in medical facilities are included in these calculations. Data  was not provided on the homeless population or those with access and functional needs.  KLD designed bus routes to service the transit dependent population in each EMZ. These routes  are shown in Figure 11‐2 and described in Table 11‐1.  These routes were designed by grouping  EMZs into clusters to minimize the number of buses needed.  For example, using a weighted  distribution, there are 5 people in EMZ 1, 8 people in EMZ 2, and 9 people in EMZ 10 that would  need transportation assistance to evacuate.  Since these EMZs border one another, a single bus  could be used to gather all of these people.  Assuming a bus capacity of 30 people, as discussed  above, only one bus is needed to evacuate these three EMZs, rather than using one bus for  each EMZ.  This grouping of EMZs should be considered when looking at the summary of  vehicle demand by EMZ at the end of this section.  3.7 School Population Demand  Table 3‐9 presents the school population and transportation requirements for the direct  evacuation of all schools within the EMZ. This information was provided by the City of Ashland  supplemented by internet searches for schools in which no data was provided. The column in  Table 3‐9 entitled “Buses Required” specifies the number of buses required for each school  under the following set of assumptions and estimates:     • No students will be picked up by their parents prior to the arrival of the buses.    City of Ashland 3‐10 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0  • The estimate of buses required for school evacuation does not consider the use of  private vehicles by students.  • Bus capacity, expressed in students per bus, was assumed to be 40 for High School  and Middle School buses, and 60 for Elementary School and childcare facility buses.    • Those staff members who do not accompany the students will evacuate in their  private vehicles.  • No allowance is made for student absenteeism, typically 3 percent daily.  The City of Ashland may consider procedures whereby the schools are contacted prior to the  dispatch of buses from the depot to ascertain the current estimate of students to be evacuated.   In this way, the number of buses dispatched to the schools will reflect the actual number  needed. The need for buses would be reduced by any high school students who have evacuated  using private automobiles (if permitted by school authorities). Those buses originally allocated  to evacuate schoolchildren that are not needed due to children being picked up by their  parents, can be gainfully assigned to service other facilities or those persons who do not have  access to private vehicles or to ride‐sharing.  3.8 External Traffic   Vehicles will be traveling through the study area (external‐external trips) at the time of an  event. After the Advisory to Evacuate is announced, these through‐travelers will also evacuate.  These through vehicles are assumed to travel on the major route traversing the study area –  Interstate 5. It is likely dynamic and variable message signs will be strategically positioned  outside of the study area at logical diversion points to attempt to divert traffic away from the  area at risk. As such, it is assumed this external traffic will diminish over 120 minutes following  the Advisory to Evacuate.  Average Annual Daily Traffic (AADT) data was obtained from Oregon Department of  Transportation (ODOT) to estimate the number of vehicles per hour on the aforementioned  routes. The AADT was multiplied by the K‐Factor, which is the proportion of the AADT on a  roadway segment or link during the design hour, resulting in the Design Hour Volume (DHV).  The design hour is usually the 30th highest hourly traffic volume of the year, measured in  vehicles per hour (vph). The DHV is then multiplied by the D‐Factor, which is the proportion of  the DHV occurring in the peak direction of travel (also known as the directional split).   The resulting values are the directional design hourly volumes (DDHV) and are presented in  Table 3‐10, for each of the routes considered. The DDHV is then multiplied by 2 hours (dynamic  messaging signs are assumed to be activated within the 120 minutes of the ATE; no vehicles  have diverted during this time) to estimate the total number of external vehicles loaded on the  analysis network. As indicated in Table 3‐10, there are 8,412 vehicles entering the study area as  external‐external trips prior to any diversion of traffic. This number is reduced by 60% for  evening scenarios (Scenarios 3 and 6) as discussed in Section 6.     City of Ashland 3‐11 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0  3.9 Background Traffic  Section 5 discusses the time needed for the people in the study area to mobilize and begin their  evacuation trips. As shown in Table 5‐8, there are 14 time periods during which traffic is loaded  on to roadways in the study area to model the mobilization time of people in the study area. All  traffic is loaded within these 14 time periods. Note, there is no traffic generated during the 15th  time period, as this time period is intended to allow traffic that has already begun evacuating to  clear the study area boundaries.  In traffic simulations, the network is initially empty.  Thus, for this study, the network needs to  be filled (to represent a routine travel conditions just prior to an evacuation order) so that  system performance can be assessed under a more realistic set of conditions. As such, there is a  30‐minute initialization time period (often referred to as “fill time” in traffic simulation)  wherein a portion of the traffic volumes from Time Period 1 are loaded onto roadways in the  study area. The amount of initialization/fill traffic that is on the roadways in the study area at  the start of Time Period 1 depends on the scenario and the region being evacuated (see Section  6). There are 1,578 vehicles on the roadways in the study area at the end of fill time for an  evacuation of all the EMZ (Region R18) under Scenario 1 (summer, midweek, midday, normal)  conditions.  3.10 Summary of Demand  A summary of population and vehicle demand is provided in Table 3‐11 and Table 3‐12,  respectively. This summary includes all population groups described in this section. A total of  47,674 people and 37,654 vehicles are considered in this study.       City of Ashland 3‐12 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0    Table 3‐1. County Population Change and Annual Growth Rate from April 1, 2010 to July 1, 2019  County 2010 Population 2019 Population Percent Change Annual Growth Rate  Jackson 203,204 220,944 8.73% 0.91%    Table 3‐2. Municipality Population Change and Annual Growth Rate from April 1, 2010 to July 1, 2019  Municipality 2010 Population 2019 Population Percent Change Annual Growth Rate  Jackson County, OR  EMZ  Ashland 20,076 21,281 6.00% 0.63%  Shadow Region  Talent 6,059 6,608 9.06% 0.94%    Table 3‐3.  EMZ Permanent Resident Population  EMZ 2010 Population  2020 Extrapolated  Population  1 1,170 1,252  2 1,665 1,777  3 3,283 3,506  4 2,653 2,835  5 593 636  6 3,307 3,531  7 1,973 2,110  8 1,397 1,489  9 2,115 2,257  10 1,922 2,056  TOTAL 20,078 21,449  Population Growth (2010‐2020): 6.83%  Shadow 9,164 10,099  STUDY AREA TOTAL 29,242 31,548           City of Ashland 3‐13 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0  Table 3‐4.  Permanent Resident Population and Vehicles by EMZ  EMZ  2020 Extrapolated  Population  2020  Resident Vehicles  1 1,252 803  2 1,777 1,074  3 3,506 2,243  4 2,835 1,813  5 636 409  6 3,531 2,266  7 2,110 1,354  8 1,489 953  9 2,257 1,445  10 2,056 1,306  TOTAL 21,449 13,666  Shadow 10,099 6,490  STUDY AREA TOTAL 31,548 20,156    Table 3‐5.  Summary of Tourists and Tourist Vehicles  EMZ Tourists Tourist Vehicles  1 1,000 280  2 75 1338  3 2,205 4208  4 180 90  5 732 355  6 328 147  7 266 119  8 0 4758  9 180 150  10 184 83  TOTAL 5,150 2,252                      8 There is limited parking capacity at Oregon Shakespeare Festival in EMZ 3. According to the city, the vehicles for the festival are parked at multiple places near the theatre in EMZs (2, 3 and 8).   City of Ashland 3‐14 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0        Table 3‐6.  Summary of Employees and Employee Vehicles Commuting into the EMZ  EMZ Employees Employee Vehicles  1 74 70  2 100 94  3 627 593  4 0 0  5 181 171  6 475 448  7 86 81  8 599 565  9 54 51  10 106 100  TOTAL 2,302 2,173    City of Ashland 3‐15 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0  Table 3‐7.  Medical Facilities Transit Demand Estimates  EMZ Facility Name Capacity  Current   Census  Ambulatory  Patients  Wheel‐ chair  Bound  Patients  Bed‐  ridden  Patients Buses  Wheel‐  chair  Buses Ambulances  2 Asante Ashland Community Hospital 125 125 63 31 31 3 3 16  10 Ashland Surgery Center 25 25 13 6 6 1 1 3  2 Linda Vista Nursing & Rehab Center 100 100 50 25 25 2 2 13  TOTAL: 250 250 126 62 62 6 6 32        Table 3‐8.  Transit‐Dependent Population Estimates  Projected  2020 EPZ  Population  Survey Average  HH Size  with Indicated No.  of Vehicles  Estimated  No. of  Households  Survey Percent HH   with Indicated No. of  Vehicles  Survey   Percent HH  with  Commuters  Survey  Percent HH  with Non‐ Returning  Commuters  Total  People  Requiring  Transport  Estimated  Ridesharing  Percentage  People  Requiring  Public  Transit  Percent  Population  Requiring  Public  Transit 0 1 2 0 1 2  21,449 1.50 1.76 2.56 9,618 0.68% 35.30% 44.26% 35.82% 61.31% 780 88% 94 0.4%         City of Ashland 3‐16 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0  Table 3‐9.  School and Preschool/Daycare Population Demand Estimates  EMZ School Name Enrollment  Buses  Required  10 Helman Elementary School 360 6  7 Ashland High School 1,000 25  6 Walker Elementary School 340 6  6 Ashland Middle School 900 23  6 John Muir Elementary School 270 5  6 Bellview Elementary School 460 8  3 Southern Oregon University 5,000 2  TOTAL: 8,330 75  2 Oregon Child Development 213 4  3 Reflective Hearts Childcare 10 1  6 Stone Soup Playschool 10 1  3 Pea Pod Village 10 1  2 Children’s World 10 1  4 Memory Lane Preschool 20 1  7 Head Start 20 1  4 Rain and Shine Preschool 20 1  PRESCHOOL/DAYCARE TOTAL: 313 11    Table 3‐10.  Study Area External Traffic Demand  Upstream  Node  Downstream  Node Road Name Direction ODOT1 K‐Factor2 D‐Factor2 Hourly  Volume  External  AADT Traffic  8001 291 I‐5 NB 39,300 0.107 0.5 2,103 4,206  8002 31 I‐5 SB 39,300 0.107 0.5 2,103 4,206  TOTAL: 8,412  1 https://www.oregon.gov/ODOT/DATA/Pages/Traffic‐Counting.aspx  2 HCM 2016      City of Ashland 3‐17 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0  Table 3‐11.  Summary of Population Demand  EMZ Residents  Transit‐  Dependent Tourists Employees  Medical  Facilities Schools   On  Campus  University  Students  Off  Campus  University  Students  External  Traffic Total  1 1,252 5 1,000 74 0 0 0 0 0 2,331  2 1,777 8 75 100 225 0 0 0 0 2,185  3 3,506 15 2,205 627 0 0 850 4,150 0 11,353  4 2,835 15 180 0 0 0 0 0 0 3,030  5 636 3 732 181 0 0 0 0 0 1,552  6 3,531 13 328 475 0 1,970 0 0 0 6,317  7 2,110 9 266 86 0 1,000 0 0 0 3,471  8 1,489 7 0 599 0 0 0 0 0 2,095  9 2,257 10 180 54 0 0 0 0 0 2,501  10 2,056 9 184 106 25 360 0 0 0 2,740  Shadow 10,099 0 0 0 0 0 0 0 0 10,099  Total 31,548 94 5,150 2,302 250 3,330 850 4,150 0 47,674                        City of Ashland 3‐18 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0  Table 3‐12.  Summary of Vehicle Demand  EMZ Residents  Transit‐  Dependent10 11 Tourists Employees  Medical  Facilities10  School  Buses10  On  Campus  University  Students  Off  Campus  University  Students  External  Traffic Total  1 803 2 280 70 0 0 0 0 0 1,155  2 1,074 0 133 94 49 10 0 0 0 1,360  3 2,243 2 420 593 0 8 510 3,915 0 7,691  4 1,813 0 90 0 0 4 0 0 0 1,907  5 409 2 355 171 0 0 0 0 0 937  6 2,266 0 147 448 0 86 0 0 0 2,947  7 1,354 2 119 81 0 52 0 0 0 1,608  8 953 0 475 565 0 0 0 0 0 1,993  9 1,445 0 150 51 0 0 0 0 0 1,646  10 1,306 0 83 100 7 12 0 0 0 1,508  Shadow 6,490 0 0 0 0 0 0 0 8,412 14,902  Total 20,156 8 2,252 2,173 56 172 510 3,915 8,412 37,654          10 One bus is equivalent to 2 pce’s. As such, buses for transit dependent persons, ambulatory and wheelchair bound medical facility patients, schools and colleges are doubled in the simulation. 11 Transit dependent buses for EMZs 2 and 10 are included with EMZ 1. Transit dependent buses for EMZ 4 is included with EMZ 3. Transit dependent buses for EMZ 6 is included with EMZ 5. Transit dependent buses for EMZs 8 and 9 are included with EMZ 7.     City of Ashland 3‐19 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0    Figure 3‐1.  EMZ Boundaries   City of Ashland 3‐20 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0    Figure 3‐2. Census Boundaries within the Study Area    City of Ashland 4‐1 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  4 ESTIMATION OF HIGHWAY CAPACITY  The ability of the road network to service vehicle demand is a major factor in determining how  rapidly an evacuation can be completed.  The capacity of a road is defined as the maximum  hourly rate at which persons or vehicles can reasonably be expected to traverse a point or  uniform section of a lane of roadway during a given time period under prevailing roadway,  traffic and control conditions, as stated in the 2016 Highway Capacity Manual (HCM 2016). This  section discusses how the capacity of the roadway network was estimated.  In discussing capacity, different operating conditions have been assigned alphabetical  designations, A through F, to reflect the range of traffic operational characteristics. These  designations have been termed "Levels of Service" (LOS). For example, LOS A connotes  free‐flow and high‐speed operating conditions; LOS F represents a forced flow condition. LOS E  describes traffic operating at or near capacity.  Another concept, closely associated with capacity, is “Service Volume” (SV). Service volume is  defined as “The maximum hourly rate at which vehicles, bicycles or persons reasonably can be  expected to traverse a point or uniform section of a roadway during an hour under specific  assumed conditions while maintaining a designated level of service.” This definition is similar to  that for capacity. The major distinction is that values of SV vary from one LOS to another, while  capacity is the service volume at the upper bound of LOS E, only.  Thus, in simple terms, a service volume is the maximum traffic that can travel on a road and still  maintain a certain perceived level of quality to a driver based on the A, B, C, rating system  (LOS).  Any additional vehicles above the service volume would drop the rating to a lower letter  grade.  This distinction is illustrated in Exhibit 12‐37 of the HCM 2016. As indicated there, the SV varies  with Free Flow Speed (FFS), and LOS. The SV is calculated by the DYNEV II simulation model,  based on the specified link attributes, FFS, capacity, control device and traffic demand.  Other factors also influence capacity. These include, but are not limited to:   Lane width   Shoulder width   Pavement condition   Horizontal and vertical alignment (curvature and grade)   Percent truck traffic   Control device (and timing, if it is a signal)   Weather conditions (rain, snow, fog, wind speed, ice)  These factors are considered during the road survey and in the capacity estimation process;  some factors have greater influence on capacity than others. For example, lane and shoulder  width have only a limited influence on Base Free Flow Speed (BFFS1) according to Exhibit 15‐7  of the HCM. Consequently, lane and shoulder widths at the narrowest points were observed    1 A very rough estimate of BFFS might be taken as the posted speed limit plus 10 mph (HCM 2016 Page 15-15).   City of Ashland 4‐2 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  during the road survey and these observations were recorded, but no detailed measurements  of lane or shoulder width were taken. Horizontal and vertical alignment can influence both FFS  and capacity.  The estimated FFS were measured using the survey vehicle’s speedometer and  observing local traffic, under free flow conditions.  Capacity is estimated from the procedures of  the 2016 HCM.  For example, HCM Exhibit 7‐1(b) shows the sensitivity of Service Volume at the  upper bound of LOS D to grade (capacity is the Service Volume at the upper bound of LOS E).  The amount of traffic that can flow on a roadway is effectively governed by vehicle speed and  spacing.  The faster that vehicles can travel when closely spaced, the higher the amount of flow.    Since congestion arising from evacuation may be significant, estimates of roadway capacity  must be determined with great care.  Because of its importance, a brief discussion of the major  factors that influence highway capacity is presented in this section.  Rural highways generally consist of: (1) one or more uniform sections with limited access  (driveways, parking areas) characterized by “uninterrupted” flow; and (2) approaches to at‐ grade intersections where flow can be “interrupted” by a control device or by turning or  crossing traffic at the intersection. Due to these differences, separate estimates of capacity  must be made for each section. Often, the approach to the intersection is widened by the  addition of one or more lanes (turn pockets or turn bays), to compensate for the lower capacity  of the approach due to the factors there that can interrupt the flow of traffic. These additional  lanes are recorded during the field survey and later entered as input to the DYNEV II system.  4.1 Capacity Estimations on Approaches to Intersections  At‐grade intersections are apt to become the first bottleneck locations under local heavy traffic  volume conditions. This characteristic reflects the need to allocate access time to the respective  competing traffic streams by exerting some form of control.  During evacuation, control at  critical intersections will often be provided by traffic control personnel assigned for that  purpose, whose directions may supersede traffic control devices.   The per‐lane capacity of an approach to a signalized intersection can be expressed  (simplistically) in the following form:  𝑄௖௔௣,௠ ൌ ൬3600 ℎ௠ ൰ ൈ ൬𝐺െ𝐿 𝐶൰ ௠ ൌ ൬3600 ℎ௠ ൰ ൈ𝑃௠  where:  Qcap,m = Capacity of a single lane of traffic on an approach, which executes  movement, m, upon entering the intersection; vehicles per hour (vph)  hm = Mean queue discharge headway of vehicles on this lane that are executing  movement, m; seconds per vehicle  G = Mean duration of GREEN time servicing vehicles that are executing  movement, m, for each signal cycle; seconds  L = Mean "lost time" for each signal phase servicing movement, m; seconds    City of Ashland 4‐3 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  C = Duration of each signal cycle; seconds  Pm = Proportion of GREEN time allocated for vehicles executing movement, m,  from this lane.  This value is specified as part of the control treatment.  m = The movement executed by vehicles after they enter the  intersection: through, left‐turn, right‐turn, and diagonal.    The turn‐movement‐specific mean discharge headway hm, depends in a complex way upon  many factors: roadway geometrics, turn percentages, the extent of conflicting traffic streams,  the control treatment, and others.  A primary factor is the value of "saturation queue discharge  headway", hsat, which applies to through vehicles that are not impeded by other conflicting  traffic streams. This value, itself, depends upon many factors including motorist behavior.  Formally, we can write,    ℎ௠ ൌ𝑓௠ሺℎ௦௔௧,𝐹ଵ,𝐹ଶ,…ሻ  where:  hsat = Saturation discharge headway for through vehicles; seconds per vehicle  F1,F2 = The various known factors influencing hm   fm( ) = Complex function relating hm to the known (or estimated) values of hsat,  F1, F2, …  The estimation of hm for specified values of hsat, F1, F2, ... is undertaken within the DYNEV II  simulation model by a mathematical model2. The resulting values for hm always satisfy the  condition:  ℎ௠ ൒ℎ௦௔௧  That is, the turn‐movement‐specific discharge headways are always greater than, or equal to  the saturation discharge headway for through vehicles.  These headways (or its inverse  equivalent, “saturation flow rate”), may be determined by observation or using the procedures  of the HCM 2016.    2Lieberman, E., "Determining Lateral Deployment of Traffic on an Approach to an Intersection", McShane, W. & Lieberman, E., "Service Rates of Mixed Traffic on the far Left Lane of an Approach". Both papers appear in Transportation Research Record 772, 1980. Lieberman, E., Xin, W., “Macroscopic Traffic Modeling For Large-Scale Evacuation Planning”, presented at the TRB 2012 Annual Meeting, January 22-26, 2012.    City of Ashland 4‐4 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  The above discussion is necessarily brief given the scope of this Evacuation Time Estimate (ETE)  report and the complexity of the subject of intersection capacity. In fact, Chapters 19, 20 and 21  in the HCM 2016 address this topic. The factors, F1, F2, ..., influencing saturation flow rate are  identified in equation (19‐8) of the HCM 2016.  The traffic signals within the EMZ and Shadow Region are modeled using representative  phasing plans and phase durations obtained as part of the field data collection. Traffic  responsive signal installations allow the proportion of green time allocated (Pm) for each  approach to each intersection to be determined by the expected traffic volumes on each  approach during evacuation circumstances. The amount of green time (G) allocated is subject  to maximum and minimum phase duration constraints; 2 seconds of yellow time are indicated  for each signal phase and 1 second of all‐red time is assigned between signal phases, typically. If  a signal is pre‐timed, the yellow and all‐red times observed during the road survey are used. A  lost time (L) of 2.0 seconds is used for each signal phase in the analysis.  4.2 Capacity Estimation along Sections of Highway  The capacity of highway sections ‐‐ as distinct from approaches to intersections ‐‐ is a function  of roadway geometrics, traffic composition (e.g. percent heavy trucks and buses in the traffic  stream) and, of course, motorist behavior. There is a fundamental relationship which relates  service volume (i.e. the number of vehicles serviced within a uniform highway section in a given  time period) to traffic density. The top curve in Figure 4‐1 illustrates this relationship.  As indicated, there are two flow regimes: (1) Free Flow (left side of curve); and (2) Forced Flow  (right side).  In the Free Flow regime, the traffic demand is fully serviced; the service volume  increases as demand volume and density increase, until the service volume attains its maximum  value, which is the capacity of the highway section. As traffic demand and the resulting highway  density increase beyond this "critical" value, the rate at which traffic can be serviced (i.e. the  service volume) can actually decline below capacity (“capacity drop”).  Therefore, in order to  realistically represent traffic performance during congested conditions (i.e. when demand  exceeds capacity), it is necessary to estimate the service volume, VF, under congested  conditions.  The value of VF can be expressed as:  𝑉ி ൌ 𝑅 ൈ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦  where:  R = Reduction factor which is less than unity    City of Ashland 4‐5 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  We have employed a value of R=0.90. The advisability of such a capacity reduction factor is  based upon empirical studies that identified a fall‐off in the service flow rate when congestion  occurs at “bottlenecks” or “choke points” on a freeway system.  Zhang and Levinson3 describe a  research program that collected data from a computer‐based surveillance system (loop  detectors) installed on the Interstate Highway System, at 27 active bottlenecks in the twin cities  metro area in Minnesota over a 7‐week period.  When flow breakdown occurs, queues are  formed which discharge at lower flow rates than the maximum capacity prior to observed  breakdown.  These queue discharge flow (QDF) rates vary from one location to the next and  also vary by day of week and time of day based upon local circumstances.  The cited reference  presents a mean QDF of 2,016 passenger cars per hour per lane (pcphpl).  This figure compares  with the nominal capacity estimate of 2,250 pcphpl estimated for the ETE and indicated in  Appendix H for freeway links.  The ratio of these two numbers is 0.896 which translates into a  capacity reduction factor of 0.90.   Since the principal objective of evacuation time estimate analyses is to develop a “realistic”  estimate of evacuation times, use of the representative value for this capacity reduction factor  (R=0.90) is justified.  This factor is applied only when flow breaks down, as determined by the  simulation model.  Rural roads, like freeways, are classified as “uninterrupted flow” facilities.  (This is in contrast  with urban street systems which have closely spaced signalized intersections and are classified  as “interrupted flow” facilities.)  As such, traffic flow along rural roads is subject to the same  effects as freeways in the event traffic demand exceeds the nominal capacity, resulting in  queuing and lower QDF rates.  As a practical matter, rural roads rarely break down at locations  away from intersections. Any breakdowns on rural roads are generally experienced at  intersections where other model logic applies, or at lane drops which reduce capacity there.   Therefore, the application of a factor of 0.90 is appropriate on rural roads, but rarely, if ever,  activated.  The estimated value of capacity is based primarily upon the type of facility and on roadway  geometrics.  Sections of roadway with adverse geometrics are characterized by lower free‐flow  speeds and lane capacity. Exhibit 15‐46 in the Highway Capacity Manual was referenced to  estimate saturation flow rates.  The impact of narrow lanes and shoulders on free‐flow speed  and on capacity is not material, particularly when flow is predominantly in one direction as is  the case during an evacuation.  The procedure used here was to estimate "section" capacity, VE, based on observations made  traveling over each section of the evacuation network, based on the posted speed limits and  travel behavior of other motorists and by reference to the 2016 HCM.  The DYNEV II simulation  model determines for each highway section, represented as a network link, whether its  capacity would be limited by the "section‐specific" service volume, VE, or by the  intersection‐specific capacity.  For each link, the model selects the lower value of capacity.       3Lei Zhang and David Levinson, “Some Properties of Flows at Freeway Bottlenecks,” Transportation Research Record 1883, 2004.   City of Ashland 4‐6 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  4.3 Application to the City of Ashland Study Area  As part of the development of the link‐node analysis network for the study area, an estimate of  roadway capacity is required. The source material for the capacity estimates presented herein  is contained in:  2016 Highway Capacity Manual (HCM)   Transportation Research Board  National Research Council  Washington, D.C.   The highway system in the study area consists primarily of three categories of roads and, of  course, intersections:   Two‐Lane roads: Local, State   Multi‐Lane Highways (at‐grade)   Freeways  Each of these classifications will be discussed.  4.3.1 Two‐Lane Roads  Ref: HCM Chapter 15  Two lane roads comprise the majority of highways within the study area. The per‐lane capacity  of a two‐lane highway is estimated at 1,700 passenger cars per hour (pc/h).  This estimate is  essentially independent of the directional distribution of traffic volume except that, for  extended distances, the two‐way capacity will not exceed 3,200 pc/h. The HCM procedures  then estimate LOS and Average Travel Speed.  The DYNEV II simulation model accepts the  specified value of capacity as input and computes average speed based on the time‐varying  demand: capacity relations.  Based on the field survey and on expected traffic operations associated with evacuation  scenarios:   Most sections of two‐lane roads within the study area are classified as “Class I”, with  "level terrain"; some are “rolling terrain”.   “Class II” highways are mostly those within urban and suburban centers.  4.3.2 Multi‐Lane Highway  Ref: HCM Chapter 12  Exhibit 12‐8 of the HCM 2016 presents a set of curves that indicate a per‐lane capacity ranging  from approximately 1,900 to 2,300 pc/h, for free‐speeds of 45 to 70 mph, respectively.  Based  on observation, the multi‐lane highways outside of urban areas within the study area service  traffic with free‐speeds in this range.  The actual time‐varying speeds computed by the  simulation model reflect the demand and capacity relationship and the impact of control at    City of Ashland 4‐7 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  intersections.  A conservative estimate of per‐lane capacity of 1,900 pc/h is adopted for this  study for multi‐lane highways outside of urban areas, as shown in Appendix H.  4.3.3 Freeways  Ref: HCM Chapters 10, 12, 13, 14  Chapter 10 of the HCM 2016 describes a procedure for integrating the results obtained in  Chapters 12, 13 and 14, which compute capacity and LOS for freeway components.  Chapter 10  also presents a discussion of simulation models. The DYNEV II simulation model automatically  performs this integration process.  Chapter 12 of the HCM 2016 presents procedures for estimating capacity and LOS for “Basic  Freeway Segments".  Exhibit 12‐37 of the HCM 2016 presents capacity vs. free speed estimates,  which are provided below.    Free Speed (mph): 55 60 65 70+  Per‐Lane Capacity (pc/h): 2,250 2,300 2,350 2,400    The inputs to the simulation model are highway geometrics, free‐speeds and capacity based on  field observations. The simulation logic calculates actual time‐varying speeds based on demand:  capacity relationships. A conservative estimate of per‐lane capacity of 2,250 pc/h is adopted for  this study for freeways, as shown in Appendix H.  Chapter 13 of the HCM 2016 presents procedures for estimating capacity, speed, density and  LOS for freeway weaving sections.  The simulation model contains logic that relates speed to  demand volume: capacity ratio.  The value of capacity obtained from the computational  procedures detailed in Chapter 13 depends on the "Type" and geometrics of the weaving  segment and on the "Volume Ratio" (ratio of weaving volume to total volume).  Chapter 14 of the HCM 2016 presents procedures for estimating capacities of ramps and of  "merge" areas.  There are three significant factors to the determination of capacity of a ramp‐ freeway junction:  The capacity of the freeway immediately downstream of an on‐ramp or  immediately upstream of an off‐ramp; the capacity of the ramp roadway; and the maximum  flow rate entering the ramp influence area.  In most cases, the freeway capacity is the  controlling factor.  Values of this merge area capacity are presented in Exhibit 14‐10 of the HCM  2016 and depend on the number of freeway lanes and on the freeway free speed.  Ramp  capacity is presented in Exhibit 14‐12 and is a function of the ramp’s FFS.  The DYNEV II  simulation model logic simulates the merging operations of the ramp and freeway traffic in  accord with the procedures in Chapter 14 of the HCM 2016.  If congestion results from an  excess of demand relative to capacity, then the model allocates service appropriately to the  two entering traffic streams and produces LOS F conditions (The HCM does not address LOS F  explicitly).      City of Ashland 4‐8 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  4.3.4 Intersections  Ref: HCM Chapters 19, 20, 21, 22  Procedures for estimating capacity and LOS for approaches to intersections are presented in  Chapter 19 (signalized intersections), Chapters 20, 21 (un‐signalized intersections) and Chapter  22 (roundabouts).  The complexity of these computations is indicated by the aggregate length  of these chapters.  The DYNEV II simulation logic is likewise complex.  The simulation model explicitly models intersections: Stop/yield controlled intersections (both  2‐way and all‐way) and traffic signal controlled intersections. Where intersections are  controlled by fixed time controllers, traffic signal timings are set to reflect average (non‐ evacuation) traffic conditions. Actuated traffic signal settings respond to the time‐varying  demands of evacuation traffic to adjust the relative capacities of the competing intersection  approaches.  The model is also capable of modeling the presence of manned traffic control. At specific  locations where it is advisable or where existing plans call for overriding existing traffic control  to implement manned control, the model will use actuated signal timings that reflect the  presence of traffic guides. At locations where a special traffic control strategy (continuous left‐ turns, contra‐flow lanes) is used, the strategy is modeled explicitly. Where applicable, the  location and type of traffic control for nodes in the evacuation network are noted in Appendix  H.  4.4 Simulation and Capacity Estimation  Chapter 6 of the HCM is entitled, “HCM and Alternative Analysis Tools.” The chapter discusses  the use of alternative tools such as simulation modeling to evaluate the operational  performance of highway networks.  Among the reasons cited in Chapter 6 to consider using  simulation as an alternative analysis tool is:  “The system under study involves a group of different facilities or travel modes with  mutual interactions involving several HCM chapters. Alternative tools are able to analyze  these facilities as a single system.”  This statement succinctly describes the analyses required to determine traffic operations across  an area encompassing a study area operating under evacuation conditions.  The model utilized  for this study, DYNEV II, is further described in Appendix C. It is essential to recognize that  simulation models do not replicate the methodology and procedures of the HCM – they replace  these procedures by describing the complex interactions of traffic flow and computing  Measures of Effectiveness (MOE) detailing the operational performance of traffic over time and  by location.  The DYNEV II simulation model includes some HCM 2016 procedures only for the  purpose of estimating capacity.    City of Ashland 4‐9 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  All simulation models must be calibrated properly with field observations that quantify the  performance parameters applicable to the analysis network. Two of the most important of  these are: (1) FFS; and (2) saturation headway, hsat. The first of these is estimated by direct  observation during the road survey; the second is estimated using the concepts of the HCM  2016, as described earlier. These parameters are listed in Appendix H, for each network link.  It is important to note that simulation represents a mathematical representation of an assumed  set of conditions using the best available knowledge and understanding of traffic flow and  available inputs.  Simulation should not be assumed to be a prediction of what will happen  under any event because a real evacuation can be impacted by an infinite number of things –  many of which will differ from these test cases – and many others cannot be taken into account  with the tools available.      4.5 Boundary Conditions  As illustrated in Figure 1‐2 and in Appendix H, the link‐node analysis network used for this study  is finite. The analysis network extends well beyond the EMZ in order to model intersections  with other major population areas and evacuation routes beyond the study area. However, the  network does have an end at the destination (exit) nodes as discussed in Appendix C. Beyond  these destination nodes, there may be signalized intersections or merge points that impact the  capacity of the evacuation routes leaving the study area. Rather than neglect these “boundary  conditions,” this study assumes a 25% reduction in capacity on two‐lane roads (Section 4.3.1  above) and multi‐lane highways (Section 4.3.2 above). There is no reduction in capacity for  freeways due to boundary conditions. The 25% reduction in capacity is based on the prevalence  of actuated traffic signals in the study area and the fact that the evacuating traffic volume will  be more significant than the competing traffic volume at any downstream signalized  intersections, thereby warranting a more significant percentage (75% in this case) of the signal  green time.    City of Ashland 4‐10 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure 4‐1. Fundamental Diagrams      Capacity Drop Qs f s Volume, vph Qmax Speed, mph R vc k k j opt k Flow Regimes Density, vpm Density, vpm R Qmax k vf Free Forced   City of Ashland 5‐1 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  5 ESTIMATION OF TRIP GENERATION TIME  It is general practice for planners to estimate the distributions of elapsed times associated with  mobilization activities undertaken by the public to prepare for the evacuation trip. The elapsed  time associated with each activity is represented as a statistical distribution reflecting  differences between members of the public. The quantification of these activity‐based  distributions relies largely on the results of the demographic survey. We define the sum of  these distributions of elapsed times as the Trip Generation Time Distribution.  This section  documents how the trip generation time distributions were estimated.  5.1 Background  In general, during a wildfire emergency, priorities are given to life safety, preservation of  property and resource conservation. To ensure life safety, depending on the severity, wind  speed and direction of the wildfire, emergency officials may issue warnings that include  evacuation.  As a Planning Basis, we will adopt a conservative posture, a rapidly escalating wildfire situation,  wherein evacuation is required, ordered promptly and no early protective actions have been  implemented when calculating the Trip Generation Time. In these analyses, we have assumed:  1. The advisory to evacuate will be announced coincident with local emergency alerts (e.g.  emergency alert systems (EAS) broadcasts, sirens, social media, local news, door‐to‐ door and with alike communication systems).  2. Mobilization of the general population will commence within 15 minutes after  emergency alerts.  3. ETE are measured relative to the advisory to evacuate.  We emphasize that the adoption of this planning basis is not a representation that these events  will occur within the indicated time frame. Rather, these assumptions are necessary in order to:  1. Establish a temporal framework for estimating the Trip Generation distribution   2. Identify temporal points of reference that uniquely define "Clear Time" and ETE.  The notification process consists of two events:  1. Transmitting information using the alert and notification systems mentioned above.  2. Receiving and correctly interpreting the information that is transmitted.  The population within the Emergency Management Zone (EMZ) is dispersed over an area of  approximately 6.7 square miles and is engaged in a wide variety of activities. It must be  anticipated that some time will elapse between the transmission and receipt of the information  advising the public of an event.  The amount of elapsed time will vary from one individual to the next depending on where that  person is, what that person is doing, and related factors. Furthermore, some persons who will  be directly involved with the evacuation process may be outside the EMZ at the time the    City of Ashland 5‐2 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  emergency is declared. These people may be commuters, shoppers and other travelers who  reside within the EMZ and who will return to join the other household members upon receiving  notification of an emergency.  As indicated in Section 2.13 of NUREG/CR‐6863, the estimated elapsed times for the receipt of  notification can be expressed as a distribution reflecting the different notification times for  different people within, and outside, the EMZ. By using time distributions, it is also possible to  distinguish between different population groups and different day‐of‐week and time‐of‐day  scenarios, so that accurate ETE may be computed.  For example, people at home or at work within the EMZ might be notified by wireless  emergency alerts, television and/or radio (if available). Those well outside the EMZ might be  notified by word‐of‐mouth, with potentially longer time lags. Furthermore, the spatial  distribution of the EMZ population will differ with time of day ‐ families will be united in the  evenings but dispersed during the day. In this respect, weekends will differ from weekdays.  As indicated in Section 4.1 of NUREG/CR‐7002, the information required to compute trip  generation times is typically obtained from a demographic survey of residents.  Such a survey  was conducted for this study. Appendix F presents the survey sampling results, survey  instrument, and raw survey results. The remaining discussion will focus on the application of  the trip generation data obtained from the demographic survey to the development of the ETE  documented in this report.  5.2 Fundamental Considerations  The environment leading up to the time that people begin their evacuation trips consists of a  sequence of events and activities. Each event (other than the first) occurs at an instant in time  and is the outcome of an activity.  Activities are undertaken over a period of time. Activities may be in "series" (i.e. to undertake  an activity implies the completion of all preceding events) or may be in parallel (two or more  activities may take place over the same period of time). Activities conducted in series are  functionally dependent on the completion of prior activities; activities conducted in parallel are  functionally independent of one another. The relevant events associated with the public's  preparation for evacuation are:  Event Number Event Description  1 Notification  2 Awareness of Situation  3 Depart Work  4 Arrive Home  5 Depart on Evacuation Trip  Associated with each sequence of events are one or more activities, as outlined in Table 5‐1.  These relationships are shown graphically in Figure 5‐1.   An Event is a ‘state’ that exists at a point in time (e.g., depart work, arrive home)    City of Ashland 5‐3 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0   An Activity is a ‘process’ that takes place over some elapsed time (e.g., prepare to leave  work, travel home)  As such, a completed Activity changes the ‘state’ of an individual (e.g. the activity, ‘travel home’  changes the state from ‘depart work’ to ‘arrive home’). Therefore, an Activity can be described as  an ‘Event Sequence’; the elapsed times to perform an event sequence vary from one person to the  next and are described as statistical distributions on the following pages.  An employee who lives outside of the EMZ will follow sequence (c) of Figure 5‐1. A household  within the EMZ that has one or more commuters at work and will await their return before  beginning the evacuation trip will follow the first sequence of Figure 5‐1(a). A household within  the EMZ that has no commuters at work, or that will not await the return of any commuters,  will follow the second sequence of Figure 5‐1(a), regardless of day of week or time of day.   Households with no commuters on weekends or in the evening/night‐time will follow the  applicable sequence in Figure 5‐1(b). Tourists will always follow one of the sequences of Figure  5‐1(b). Some tourists away from their residence could elect to evacuate immediately without  returning to the residence, as indicated in the second sequence.  It is seen from Figure 5‐1, that the Trip Generation time (i.e. the total elapsed time from Event 1  to Event 5) depends on the scenario and will vary from one household to the next.  Furthermore, Event 5 depends, in a complicated way, on the time distributions of all activities  preceding that event. That is, to estimate the time distribution of Event 5, we must obtain  estimates of the time distributions of all preceding events. For this study, we adopt the  conservative posture that all activities will occur in sequence.  In some cases, assuming certain events occur strictly sequential (for instance, commuter  returning home before beginning preparation to leave) can result in rather conservative (that is,  longer) estimates of mobilization times. It is reasonable to expect that at least some parts of  these events will overlap for many households, but that assumption is not made in this study.  5.3 Estimated Time Distributions of Activities Preceding Event 5  The time distribution of an event is obtained by "summing" the time distributions of all prior  contributing activities. (This "summing" process is quite different than an algebraic sum since it  is performed on distributions – not scalar numbers).  Time Distribution No. 1, Notification Process: Activity 1      2  A demographic survey of Ashland residents was conducted to study evacuation behavior of the  population within the EMZ. The survey results were used to create the notification time  distribution. The survey asked specific questions about notifying neighbors and friends during  an emergency using various methods like phone calls, text messages, social media, and in  person conversation. Since the survey was statistically significant at the 99% confidence level, it  can be assumed that the population within the EMZ will behave similarly to the survey  respondents.     City of Ashland 5‐4 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  The City of Ashland uses emergency alert systems such as NIXLE and Citizen Alert to push  notifications to the population opted‐in to the service.   Given the presence of the existing emergency alert systems and the responses to the  demographic survey regarding notification of friends and neighbors, it was assumed that about  63% of the EMZ population can be notified within 5 minutes of an emergency, about 95% of the  EMZ population can be notified within 15 minutes, and 100% of the EMZ population can be  notified within 45 minutes. The distribution of Activity 1 → 2 shown in Table 5‐2 reflects data  obtained by the demographic survey and the above assumptions.     Given the uncertainty in some critical assumptions, several sensitivity studies were conducted  as part of this work effort to determine the elasticity of the evacuation time estimates to those  assumptions, see Appendix J.   Distribution No. 2, Prepare to Leave Work: Activity 2    3  It is reasonable to expect that the vast majority of business enterprises within the EMZ will  elect to shut down following notification and most employees would leave work  quickly.  Commuters, who work outside the EMZ could, in all probability, also leave quickly  since facilities outside the EMZ would remain open and other personnel would  remain.  Personnel or farmers responsible for equipment/livestock would require additional  time to secure their facility.  The distribution of Activity 2 → 3 shown in Table 5‐3 reflects data  obtained by the demographic survey.  This distribution is also applicable for residents to leave  stores, restaurants, parks and other locations within the EMZ. This distribution is plotted in  Figure 5‐2.   Distribution No. 3, Travel Home:  Activity 3    4  These data are provided directly by households that responded to the demographic survey.  This  distribution is plotted in Figure 5‐2 and listed in Table 5‐4.  Distribution No. 4, Prepare to Leave Home:  Activity 2, 4   5  These data are provided directly by households that responded to the demographic survey.  This  distribution is plotted in Figure 5‐2 and listed in Table 5‐5.  5.4 Calculation of Trip Generation Time Distribution  The time distributions for each of the mobilization activities presented herein must be  combined to form the appropriate Trip Generation Distributions.  As discussed above, this study  assumes that the stated events take place in sequence such that all preceding events must be  completed before the current event can occur.  For example, if a household awaits the return  of a commuter, the work‐to‐home trip (Activity 3  4) must precede Activity 4  5.  To calculate the time distribution of an event that is dependent on two sequential activities, it is  necessary to “sum” the distributions associated with these prior activities. The distribution  summing algorithm is applied repeatedly as shown to form the required distribution.  As an  outcome of this procedure, new time distributions are formed; we assign “letter” designations    City of Ashland 5‐5 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  to these intermediate distributions to describe the procedure. Table 5‐6 presents the summing  procedure to arrive at each designated distribution.  Table 5‐7 presents a description of each of the final trip generation distributions achieved after the  summing process is completed.  5.4.1 Statistical Outliers  As already mentioned, some portion of the survey respondents answer “Decline to State” to some  questions or choose to not respond to a question.  The mobilization activity distributions are based  upon actual responses. But it is the nature of surveys that a few numeric responses are  inconsistent with the overall pattern of results.  An example would be a case in which for 500  responses, almost all of them estimate less than two hours for a given answer, but 3 say “four  hours” and 4 say “six or more hours”.  These “outliers” must be considered:  are they valid responses, or so atypical that they should be  dropped from the sample?  In assessing outliers, there are three alternates to consider:  1) Some responses with very long times may be valid, but reflect the reality that the  respondent really needs to be classified in a different population subgroup, based upon  special needs;  2) Other responses may be unrealistic (6 hours to return home from commuting distance,  or 2 days to prepare the home for departure);  3)  Some high values are representative and plausible, and one must not cut them as part  of the consideration of outliers.   The issue is how to make the decision that a given response or set of responses are to be  considered “outliers” for the component mobilization activities, using a method that objectively  quantifies the process.  There is considerable statistical literature on the identification and treatment of outliers singly or  in groups, much of which assumes the data is normally distributed and some of which uses non‐ parametric methods to avoid that assumption.  The literature cites that limited work has been  done directly on outliers in sample survey responses.  In establishing the overall mobilization time/trip generation distributions, the following principles  are used:  1) It is recognized that the overall trip generation distributions are conservative estimates,  because they assume a household will do the mobilization activities sequentially, with no  overlap of activities;  2) The individual mobilization activities (receive notification, prepare to leave work, travel  home, prepare home) are reviewed for outliers, and then the overall trip generation  distributions are created (see Figure 5‐1, Table 5‐6, Table 5‐7);  3) Outliers can be eliminated either because the response reflects a special population (e.g.    City of Ashland 5‐6 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  special needs, transit dependent) or lack of realism, because the purpose is to estimate trip  generation patterns for personal vehicles;  4) To eliminate outliers,   a) the mean and standard deviation of the specific activity are estimated from the  responses,  b) the median of the same data is estimated, with its position relative to the mean  noted,   c) the histogram of the data is inspected, and   d) all values greater than 3.5 standard deviations are flagged for attention, taking  special note of whether there are gaps (categories with zero entries) in the  histogram display.  In general, only flagged values more than 4 standard deviations1 from the mean are  allowed to be considered outliers, with gaps in the histogram expected.    When flagged values are classified as outliers and dropped, steps “a” to “d” are repeated.  5) As a practical matter, even with outliers eliminated by the above, the resultant histogram,  viewed as a cumulative distribution, is not a normal distribution.  A typical situation that  results is shown below in Figure 5‐3.  6) In particular, the cumulative distribution differs from the normal distribution in two key  aspects, both very important in loading a network to estimate evacuation times:     Most of the real data is to the left of the “normal” curve above, indicating that the  network loads faster for the first 80‐85% of the vehicles, potentially causing more (and  earlier) congestion than otherwise modeled;   The last 10‐15% of the real data “tails off” slower than the comparable “normal” curve,  indicating that there is significant traffic still loading at later times.  Because these two features are important to preserve, it is the histogram of the data that  is used to describe the mobilization activities, not a “normal” curve fit to the data.  One  could consider other distributions, but using the shape of the actual data curve is  unambiguous and preserves these important features;   7) With the mobilization activities each modeled according to Steps 1‐6, including preserving  the features cited in Step 6, the overall (or total) mobilization times are constructed.  This is done by using the data sets and distributions under different scenarios (e.g. commuter  returning, no commuter returning in each).  In general, these are additive, using weighting based  upon the probability distributions of each element; Figure 5‐4 presents the combined trip  generation distributions designated A, C, and D.  These distributions are presented on the same  time scale.  (As discussed earlier, the use of strictly additive activities is a conservative approach,  because it makes all activities sequential – preparation for departure follows the return of the    1 This rule was followed for all truncation analyses except the time distribution for notification. The truncation for the notification distribution used 8 standard deviations as the responses that fell within 8 standard deviations did not appear to be statistical outliers. Only those data points that fell beyond 8 standard deviations from the mean were considered outliers. Basically, more data points were included in the distribution (rather than eliminated as outliers).   City of Ashland 5‐7 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  commuter. In practice, it is reasonable that some of these activities are done in parallel, at least to  some extent – for instance, preparation to depart begins by a household member at home while  the commuter is still on the road.)  The mobilization distributions that result is used in their tabular/graphical form as direct inputs to  later computations that lead to the ETE.  The DYNEV II simulation model is designed to accept varying rates of vehicle trip generation for  each origin centroid, expressed in the form of histograms. These histograms, which represent  Distributions A, C, and D, properly displaced with respect to one another, are tabulated in Table 5‐ 8 (Distribution B, Arrive Home, omitted for clarity).   The final time period (15) is 600 minutes long.  This time period is added to allow the analysis  network to clear, in the event congestion persists beyond the trip generation period.  Note that  there are no trips generated during this final time period.         City of Ashland 5‐8 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Table 5‐1.  Event Sequence for Evacuation Activities  Event Sequence Activity Distribution  1 → 2 Receive Notification 1  2 → 3 Prepare to Leave Work 2  2,3 → 4 Travel Home 3  2,4 → 5 Prepare to Leave to Evacuate 4            Table 5‐2.  Time Distribution for Notifying the Public  Elapsed Time  (Minutes)  Cumulative  Percent  Notified   0 0.0%  5 62.8%  10 84.5%  15 94.5%  20 97.3%  25 98.0%  30 99.2%  35 99.8%  40 99.9%  45 100.0%    City of Ashland 5‐9 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Table 5‐3.  Time Distribution for Employees to Prepare to Leave Work/College      NOTE: The survey data was normalized to distribute the "Don't know" response. That is, the sample was reduced in  size to include only those households who responded to this question.  The underlying assumption is that the  distribution of this activity for the “Don’t know” responders, if the event takes place, would be the same as those  responders who provided estimates.                            Elapsed Time  (Minutes)  Cumulative  Percent  Employees  Leaving Work  0 0%  5 35%  10 61%  15 77%  20 84%  25 87%  30 92%  35 94%  40 94%  45 96%  50 96%  55 97%  60 100%    City of Ashland 5‐10 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Table 5‐4.  Time Distribution for Commuters to Travel Home  Elapsed Time  (Minutes)  Cumulative  Percent  Returning Home  0 0%  5 16%  10 41%  15 56%  20 69%  25 82%  30 92%  35 95%  40 97%  45 98%  50 99%  55 99%  60 100%    NOTE: The survey data was normalized to distribute the “Don’t know” response.       City of Ashland 5‐11 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Table 5‐5.  Time Distribution for Population to Prepare to Evacuate  Elapsed Time  (Minutes)  Cumulative  Percent Ready to  Evacuate  0 0%  15 7%  30 38%  45 56%  60 76%  75 84%  90 87%  105 89%  120 93%  135 97%  150 98%  165 98%  180 99%  195 100%    NOTE: The survey data was normalized to distribute the "Don't know" response.        Table 5‐6.  Mapping Distributions to Events  Apply  “Summing” Algorithm To: Distribution Obtained Event Defined  Distributions 1 and 2 Distribution A Event 3  Distributions A and 3 Distribution B Event 4  Distributions B and 4 Distribution C Event 5  Distributions 1 and 4 Distribution D Event 5          City of Ashland 5‐12 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Table 5‐7.  Description of the Distributions  Distribution Description  A  Time distribution of commuters departing place of work (Event 3). Also applies  to employees who work within the EMZ who live outside, and to Tourists within  the EMZ.  B Time distribution of commuters arriving home (Event 4).  C Time distribution of residents with commuters who return home, leaving home  to begin the evacuation trip (Event 5).  D Time distribution of residents without commuters returning home, leaving home  to begin the evacuation trip (Event 5).      Table 5‐8.  Trip Generation Histograms for the EMZ Population  Time  Period  Duration  (Min)  Percent of Total Trips Generated Within Indicated Time Period  Employees  (Distribution A)  Tourists  (Distribution B)  Residents with  Commuters  (Distribution C)  Residents  Without  Commuters  (Distribution D)  1 15 46% 46% 0% 3%  2 15 36% 36% 1% 19%  3 15 11% 11% 7% 24%  4 15 3% 3% 16% 20%  5 15 4% 4% 19% 13%  6 15 0% 0% 18% 6%  7 15 0% 0% 13% 3%  8 15 0% 0% 8% 3%  9 15 0% 0% 4% 4%  10 15 0% 0% 4% 2%  11 15 0% 0% 4% 1%  12 15 0% 0% 2% 0%  13 30 0% 0% 2% 2%  14 30 0% 0% 2% 0%  15 600 0% 0% 0% 0%  NOTE:   Shadow vehicles are loaded onto the analysis network (Figure 1‐2) using Distribution C.       City of Ashland 5‐13 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure 5‐1.  Events and Activities Preceding the Evacuation Trip    households who do not Tourists evacuate directly      Households wait for Commuters 1  Residents   1  2   3  4   5    EVENTS     1.  Notification   2.  Aware of situation   3.  Depart work   4.  Arrive home   5.  Depart on evacuation trip    (a) Ignition occurs during midweek, at midday; year round    Households without Commuters and wait for Commuters  Residents   1  2   5    Residents, Tourists at Residence   1   2   5   (b) Ignition occurs during weekend or during the evening2    (c) Employees who live outside of the EMZ      Residents, Tourists away from Residence   1   2   4   5    1  2   3, 5    Return to residence, then evacuate    Residents at home; 1  Applies for evening and weekends also if commuters are at work.   2  Applies throughout the year for tourists.    #  ACTIVITIES   1     2 Receive Notification    2 3 Prepare to Leave Work 2, 3    4 Travel Home   2, 4    5 Prepare to Leave to Evacuate   Activities Consume Time      City of Ashland 5‐14 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure 5‐2.  Evacuation Mobilization Activities  0% 20% 40% 60% 80% 100% 0 306090120150180210 Pe r c e n t  of  Po p u l a t i o n  Co m p l e t i n g  Mo b i l i z a t i o n  Ac t i v i t y Elapsed Time from Start of Mobilization Activity (min) Mobilization Activities Notification Prepare to Leave Work Travel Home Prepare Home   City of Ashland 5‐15 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure 5‐3. Comparison of Data Distribution and Normal Distribution  0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0% 100.0% 2. 5 7. 5 12 . 5 17 . 5 22 . 5 27 . 5 32 . 5 37 . 5 42 . 5 47 . 5 52 . 5 57 . 5 67 . 5 82 . 5 97 . 5 11 2 . 5 Cu m u l a t i v e  Pe r c e n t a g e  (% ) Center of Interval (minutes) Cumulative Data Cumulative Normal   City of Ashland 5‐16 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0      Figure 5‐4.  Comparison of Trip Generation Distributions    0 20 40 60 80 100 0 60 120 180 240 Pe r c e n t  of  Po p u l a t i o n  Be g i n n i n g  Ev a c u a t i o n  Tr i p Elapsed Time from Evacuation Advisory (min) Trip Generation Distributions Employees/Tourists Residents with Commuters Residents with no Commuters   City of Ashland 6‐1 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    6 EVACUATION CASES  This section discusses the spatial and temporal variations in evacuation situations. The regions  outlined in the study were created based on various geometric areas that would be evacuated  in response to a wildfire emergency. The scenarios outlined in the study were created based on  the various temporal changes that affect the number of vehicles evacuating during a wildfire  emergency. This section provides an overview of all the possible evacuation cases that were  studied. An evacuation “case” defines a combination of Evacuation Region and Evacuation  Scenario. For this specific study, the definitions of “Region” and “Scenario” are as follows:  Region A grouping of evacuating EMZ, or an individual EMZ, that must be evacuated in  response to a wildfire emergency.  Scenario A combination of circumstances, including time of day, day of week, and  season.  Scenarios define the number of people in each of the affected  population groups and their respective mobilization time distributions.  A total of 18 Regions were defined which encompass all the groupings of EMZ considered.   These Regions are defined in Table 6‐1 by showing which EMZ evacuates for each Region.  EMZs  marked with a red “X” evacuate for that given Region.  The EMZ boundaries are identified in  Figure 6‐1. The EMZ boundaries were provided by the City of Ashland.  Regions R01 through R10 represent evacuations of each individual EMZ by itself. Regions R11  through R17 are evacuations of combinations of EMZ based on the origin of a potential wildfire  and prevailing winds. Lastly, Region R18 is the evacuation of all EMZs at once.   A total of 6 Scenarios were evaluated for all Regions. Thus, there are a total of 108 (18 x 6 =  108) evacuation cases.  Table 6‐2 is a description of all Scenarios.  Each combination of Region and Scenario implies a specific population to be evacuated.  The  population group and the vehicle estimates presented in Section 3 and in Appendix E are peak  values. These peak values are adjusted depending on the scenario and region being considered,  using Scenario and Region‐specific percentages, such that the average population is considered  for each evacuation case. The Scenario percentages are presented in Table 6‐3, while the  Region percentages are provided in Table G‐1.  Table 6‐4 presents the vehicle counts for each scenario for an evacuation of Region R18 – all  EMZs.  Based on the scenario percentages in Table 6‐3. The percentages presented in Table 6‐3  were determined as follows:  The number of residents with commuters during the week (when workforce is at its peak) is  equal to the product of 36% (the number of households with at least one commuter) and 39%  (the number of households with a commuter that would await the return of the commuter  prior to evacuating) – 14 percent. See assumption 16 in Section 2.3. It is estimated for weekend  and evening scenarios that 10% of households with returning commuters will have a commuter  at work during those times.    City of Ashland 6‐2 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Employment is assumed to be at its peak during the fall, midweek, midday scenarios.  Employment is reduced slightly (96%) for summer, midweek, midday scenarios. This is based on  the estimation that 50% of the employees commuting into the EMZ will be on vacation for a  week during the approximate 12 weeks of summer. It is further estimated that those taking  vacation will be uniformly dispersed throughout the summer with approximately 4% of  employees vacationing each week. It is further estimated that only 10% of the employees are  working in the evenings and during the weekends.  Tourist activity is estimated to be at its peak (100%) during evenings due to the high number of  lodging facilities in the area. During the daytime, summer weekdays and weekends have slightly  more tourists (55% and 70%, respectively) than during fall weekdays and weekend (50% and  65%, respectively) since the golf course and hiking trails peak during the summer season and on  weekends.  As noted in the shadow footnote to Table 6‐3, the shadow percentages are computed using a  base of 6% (see assumption 3 in Section 2.3); to include the employees within the shadow  region who may choose to evacuate, the voluntary evacuation is multiplied by a scenario‐ specific proportion of employees to permanent residents in the shadow region. For example,  using the values provided in Table 6‐4 for Scenario 1, the shadow percentage is computed as  follows:  6%ൈ ൬1 ൅ 2,086 1,921 ൅ 11,745൰ ൌ 7%  As discussed in Section 7, schools are in session during the fall season, midweek, midday and  100% of buses will be needed under those circumstances. In addition, 100% of on and off  campus students at Southern Oregon University are assumed to be present in the fall, with only  the on campus students being present on weekends and evenings.  It is estimated that summer  school/commuter college enrollment is approximately 10% of enrollment during the regular  school year for summer scenarios. School is not in session during weekends and evenings, thus  no buses for school children are needed under those circumstances.   Transit buses for the transit‐dependent population and medical patients are set to 100% for all  scenarios as it is assumed that the transit‐dependent population and medical patients are  present in the EMZ for all scenarios.  External traffic is estimated to be reduced by 60% during evening scenarios and is 100% for all  other scenarios.    City of Ashland 6‐3 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Table 6‐1.  Description of Evacuation Regions  Region    Emergency Management Zone (EMZ)  Description 1 2 3 4 5 6 7 8 9 10  R01 EMZ1 X                    R02 EMZ2   X                  R03 EMZ3     X                R04 EMZ4       X               R05 EMZ5          X            R06 EMZ6            X            R07 EMZ7             X         R08 EMZ8                 X      R09 EMZ9                    X    R10 EMZ10                    X  R11  Western  Ashland ‐ EMZ1,  EMZ2, EMZ3,  EMZ4  X X X X              R12  Eastern Ashland  ‐ EMZ5, EMZ6,  EMZ7, EMZ8,  EMZ9, EMZ10             X X X X X X  R13  Northern  Ashland ‐ EMZ1,  EMZ2, EMZ10  X X               X  R14  Central Ashland  ‐ EMZ3, EMZ7,  EMZ8, EMZ9       X       X X X    R15  Southern  Ashland ‐ EMZ4,  EMZ5, EMZ6          X X X          R16  Northern and  Central Ashland  ‐ EMZ1, EMZ2,  EMZ3, EMZ7,  EMZ8, EMZ9,  EMZ10  X X X       X X X X  R17  Southern and  Central Ashland  ‐ EMZ3, EMZ4,  EMZ5, EMZ6,  EMZ7, EMZ8,  EMZ9       X X X X X X X    R18 All EMZ X X X X X X X X X X  EMZ(s) Shelter‐in‐Place EMZ(s)  Evacuate    City of Ashland 6‐4 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Table 6‐2.  Evacuation Scenario Definitions  Scenario  Season Day of Week Time of Day  1 Summer Midweek Midday  2 Summer Weekend Midday  3 Summer Midweek, Weekend Evening  4 Fall Midweek Midday  5 Fall Weekend Midday  6 Fall Midweek, Weekend Evening    City of Ashland 6‐5 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0     Table 6‐3.  Percent of Population Groups Evacuating for Various Scenarios     Scenario  Households  With  Returning  Commuters  Households  Without  Returning  Commuters Employees Tourists Shadow  Medical  Vehicles  On Campus  Vehicles  Off  Campus  Vehicles  School/College  Buses  Transit  Buses  External  Through  Traffic  1 14% 86% 96% 55% 7% 100% 10% 10% 10% 100% 100%  2 1% 99% 10% 70% 6% 100% 0% 0% 0% 100% 100%  3 1% 99% 10% 100% 6% 100% 0% 0% 0% 100% 40%  4 14% 86% 100% 50% 7% 100% 100% 100% 100% 100% 100%  5 1% 99% 10% 65% 6% 100% 100% 0% 0% 100% 100%  6 1% 99% 10% 100% 6% 100% 100% 0% 0% 100% 40%      Resident Households with Commuters ....... Households of EMZ residents who await the return of commuters prior to beginning the evacuation trip.  Resident Households with No Commuters .. Households of EMZ residents who do not have commuters or will not await the return of commuters prior to beginning the evacuation trip.  Employees ................................................. Employees who live outside the EMZ but work within.  Tourists ..................................................... People who are in the EMZ at the time of an event for recreational or other (non‐employment) purposes.  Shadow ..................................................... Residents and employees in the shadow region (outside of the EMZ) who will spontaneously decide to relocate during the evacuation. The basis for the values shown is a 6%  relocation of shadow residents along with a proportional percentage of shadow employees.    On Campus Vehicles ................................... Students who reside on campus within the EMZ that will evacuate using a private vehicle.   Off Campus Vehicles .................................. Students who reside off campus within the EMZ that will evacuate using a private vehicle.   Medical, School and Transit Buses .............. Vehicle‐equivalents present on the road during evacuation servicing medical facilities, schools and transit‐dependent people (1 bus is equivalent to 2 passenger vehicles).  External Through Traffic ............................. Traffic on interstates and major arterial roads at the start of the evacuation. This traffic is stopped by access control approximately 2 hours after the evacuation  begins.      City of Ashland 6‐6 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Table 6‐4.  Vehicle Estimates by Scenario  Scenarios  Residents  with  Commuters  Residents  without  Commuters  Employees Tourists Shadow Medical  Vehicles  On  Campus  Vehicles  Off  Campus  Vehicles  School  Buses  Transit  Buses  External  Traffic  Total  Scenario  Vehicles  1  1,921    11,745    2,086    1,239    449    56    51    392    17    8    8,412    26,376   2  192    13,473    217    1,576    396    56    ‐      ‐      ‐      8    8,412    24,330   3  192    13,473    217    2,252    396    56    ‐      ‐      ‐      8    3,365    19,959   4  1,921    11,745    2,173    1,126    451    56    510    3,915    172    8    8,412    30,489   5  192    13,473    217    1,464    396    56    ‐      ‐      ‐      8    8,412    24,218   6  192    13,473    217    2,252    396    56    ‐      ‐      ‐      8    3,365    19,959           City of Ashland 6‐7 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0      Figure 6‐1.  EMZ Boundaries    City of Ashland 7‐1 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  7 GENERAL POPULATION EVACUATION TIME ESTIMATES (ETE)  This section presents the ETE results of the computer analyses using the DYNEV II System  described in Appendices B, C and D.  These results cover 18 Evacuation Regions and the 6  Evacuation Scenarios discussed in Section 6.   The ETE for all Evacuation Cases are presented in Table 7‐1 and Table 7‐2.  These tables present  the estimated times to clear the indicated population percentages from the Evacuation Regions  for all Evacuation Scenarios. Table 6‐1 and Table G‐1 defines the Evacuation Regions considered.   The tabulated values of ETE are obtained from the DYNEV II System outputs which are generated  at 5‐minute intervals.  7.1 Voluntary Evacuation and Shadow Evacuation  “Voluntary evacuees” are people within the EMZ for which an Advisory to Evacuate has not been  issued, yet who elect to evacuate. “Shadow evacuation” is the voluntary outward movement of  some people from the Shadow Region for whom no evacuation order has been issued. Both  voluntary and shadow evacuations are assumed to take place over the same time frame as the  evacuation from within the impacted Evacuation Region.  Within the EMZ, 6 percent of permanent residents located outside of the evacuation region who  are not advised to evacuate, are assumed to elect to evacuate. Similarly, it is assumed that 6  percent of those people in the Shadow Region will choose to leave the area.   Figure 7‐1 presents the area identified as the Shadow Region. The Shadow Region was defined  as the area beyond the EMZ including the City of Talent. The Shadow Region is bounded by the  northern city limit of Talent to the north, the ridge line and the United States Forest Service  (USFS) border to the west, a horizontal line connecting the USFS border to Emigrant Lake to the  south, and the ridge line to the east.  The population and number of evacuating vehicles in the  Shadow Region were estimated using the same methodology that was used for permanent  residents within the EMZ (see Section 3.1).  As discussed in Section 3.2, it is estimated that a total  of 10,099 people reside in the Shadow Region; 6 percent of them would evacuate.  See Table 6‐ 4 for the number of evacuating vehicles from the Shadow Region.   Traffic generated within this Shadow Region including external‐external traffic, traveling away  from the wildfire, has the potential for impeding evacuating vehicles from within the Evacuation  Region.  All ETE calculations include this shadow traffic movement.       City of Ashland 7‐2 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  7.2 Patterns of Traffic Congestion during Evacuation  Figure 7‐2 through Figure 7‐7 illustrate the patterns of traffic congestion that arise for the case  when all ten EMZs (Region R18) are advised to evacuate during a summer, midweek, midday  period (Scenario 4).  Traffic congestion, as the term is used here, is defined as Level of Service (LOS) F.  LOS F is defined  as follows (HCM 2016, page 5‐5):  The HCM uses LOS F to define operations that have either broken down (i.e., demand  exceeds capacity) or have reached a point that most users would consider unsatisfactory,  as described by a specified service measure value (or combination of service measure  values). However, analysts may be interested in knowing just how bad the LOS F condition  is, particularly for planning applications where different alternatives may be compared.  Several measures are available for describing individually, or in combination, the severity  of a LOS F condition:  • Demand‐to‐capacity ratios describe the extent to which demand exceeds  capacity during the analysis period (e.g., by 1%, 15%).   • Duration of LOS F describes how long the condition persists (e.g., 15 min, 1 h, 3  h).   • Spatial extent measures describe the areas affected by LOS F conditions. They  include measures such as the back of queue and the identification of the specific  intersection approaches or system elements experiencing LOS F conditions.   All highway "links" which experience LOS F are delineated in these figures by a thick red line; all  others are lightly indicated. Congestion develops around concentrations of population and traffic  bottlenecks.  Figure 7‐2 displays the congestion patterns in the study area at just 30 minutes after the advisory  to evacuate.  Severe congestion has already developed on major evacuation routes, such as  Siskiyou Blvd (OR‐99) and Ashland St (OR‐66), and many of the local roadways within the City of  Ashland.  The on ramps to I‐5 have limited capacity and, as a result, meter traffic getting onto the  interstate.  For this reason, I‐5 experiences little congestion.  At this time, approximately 41% of  vehicles have begun their evacuation trip and 15% of evacuating vehicles have successfully  evacuated the area.  At one hour after the evacuation advisory, the City of Ashland experiences peak congestion, as  shown in Figure 7‐3. Much of the city experiences gridlock as the number of evacuating vehicles  attempting to access OR‐99 exceeds its capacity.  It is important to note that traffic is moving, it  is just moving slowly.  Side streets experience congestion as they compete for green time at  signalized intersections and look for acceptable gaps at stop and yield signs along OR‐99.  Ashland  Road (OR‐66) exhibits LOS F conditions in both east bound and west bound directions between  I‐5 and OR‐99.  East bound traffic along OR‐66 exhibits LOS D conditions where there is access to  I‐5 provided by Freeway Ramps while west bound traffic continues to exhibit LOS F conditions  from I‐5 to where it meets Siskiyou Blvd (OR‐99).  Oak St leaving EMZ 9 is also significantly    City of Ashland 7‐3 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  congested.  I‐5 continues to exhibit LOS B conditions due limited capacity ramps that meter the  traffic entering the highway. At this time, approximately 72% of vehicles have begun their  evacuation trip and approximately 28% of evacuating vehicles have successfully evacuated the  area.   At two hours after the advisory to evacuate, as shown in Figure 7‐4, congestion has dissipated  along OR‐66 between OR‐99 and I‐5, as well as along E Main St, but remains quite heavy along  many of the roadways within EMZ 2, EMZ 3, EMZ 4, EMZ 9 and EMZ 10.  OR‐99 and OR‐66 remain  severely congested as vehicles continue utilizes these roadways to access I‐5.  The I‐5 southbound  freeway ramp from OR‐99 continues to be a significant bottleneck causing traffic to back up all  the way into the EMZ.  At this time, all external traffic is assumed to be diverted.  Oak St is still  congested leaving the EMZ.  Ninety‐three percent (93%) of vehicles have begun their evacuation  trip and 58% of evacuating vehicles have successfully evacuated out of the EMZs.    Congestion in the EMZ has dissipated quite a bit at three hours after the evacuation advisory, as  shown in Figure 7‐5.  At this time, congestion has cleared along E Main St.  Oak St is now operating  at LOS C within EMZ 9.  Congestion within downtown Ashland now only remains on a small  section of Oak St and OR‐99.  Severe congestion, however, remains on OR‐99 for most of the  EMZ.  Congestion persists on Crowson Rd eastbound due to the stop controlled intersection with  OR‐66. At this time, approximately 98% have mobilized, and 87% of evacuating vehicles have  successfully evacuated the EMZs.   At 3 hours and 30 minutes after the advisory to evacuate, almost all congestion within the City  of Ashland has dissipated, as shown in Figure 7‐6.  At this time, the only congestion remains at  the intersection of University Way and OR‐99 (due to the large number of commuting student at  SOU and the stop controlled right turn only at this intersection) and Clay St southbound at the  intersection with OR‐66 (again due to a high demand and stop controlled intersection).  OR‐99 is  operating at LOS C or better.  OR‐66 is operating at LOS D or better.  The rest of the EMZ is clear  of congestion.  At this time, nearly all vehicles (99.8%) have mobilized, and 99% of evacuating  vehicles have successfully evacuated the EMZs.  At four hours after the advisory to evacuate, all evacuees have mobilized and successfully  evacuated the EMZ as no congestion remains within the EMZ, as shown in Figure 7‐6.   7.3 Evacuation Rates  Evacuation is a continuous process, as implied by Figure 7‐8 through Figure 7‐13. These figures  indicate the rate at which traffic flows out of the indicated areas for the case of an evacuation of  all EMZs (Region R18) under the indicated conditions. One figure is presented for each scenario  considered.  The distance between the trip generation and ETE curves is the travel time. Plots of trip  generation versus ETE are indicative of the level of traffic congestion during evacuation. The  evacuation population mobilize over four hours as discussed in Section 5. This disperses evacuees  over a lengthy period of time, thus, as seen in Figure 7‐8 through , the maximum travel time  experienced is approximately 85 minutes.      City of Ashland 7‐4 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  As indicated in these figures, there is typically a long "tail" to these distributions due to  mobilization and not congestion.  Vehicles begin to evacuate an area slowly at first, as people  respond to the ATE at different rates. Then traffic demand builds rapidly (slopes of curves  increase). As more routes clear, the aggregate rate of egress slows since many vehicles have  already left the EMZs.  Towards the end of the process, relatively few evacuation routes service  the remaining demand.  This decline in aggregate flow rate, towards the end of the process, is characterized by these  curves flattening and gradually becoming horizontal. Ideally, it would be desirable to fully  saturate all evacuation routes equally so that all will service traffic near capacity levels and all will  clear at the same time.  For this ideal situation, all curves would retain the same slope until the  end – thus minimizing evacuation time. In reality, this ideal is generally unattainable reflecting  the spatial variation in population density, mobilization rates and in highway capacity over the  study area.  7.4 Evacuation Time Estimate (ETE) Results  Table 7‐1 and Table 7‐2 present the ETE values for all 18 Evacuation Regions and all 6 Evacuation  Scenarios.      Table Contents  7‐1  ETE represents the elapsed time required for 90 percent of the  population within a Region, to evacuate from that Region. All  Scenarios are considered.  7‐2  ETE represents the elapsed time required for 100 percent of the  population within a Region, to evacuate from that Region.  All  Scenarios are considered.    The animation snapshots described above reflect the ETE statistics for evacuation scenarios and  regions, which are displayed in Figure 7‐2 through Figure 7‐7.  Majority of the congestion is  located on major evacuation routes, OR‐66 and OR‐99 that serve a majority of the evacuating  population.    The 100th percentile ETE is 4:00 (Hours:Minutes) for all regions and scenarios. Since the trip  generation time is 4 hours, an ETE of 4:00 implies that traffic congestion clears within the EMZs  prior to the completion of mobilization time. A factor that significantly effects mobilization times  are how quickly the public can be notified of an evacuation. This study assumed notification time  of 45 minutes (see Section 5). If the evacuating population can be notified more quickly, this will  truncate mobilization times and could reduce the 100th percentile ETE. Similarly, if it takes longer  to notify the evacuation population, the 100th percentile ETE will be longer and will likely be equal  to the longer trip mobilization time. Appendix J discusses how sensitive the ETE are to changes in  mobilization time.    The 90th percentile ETE ranges between 1:20 (Hours:Minutes) and 3:10 (Hours:Minutes) for all  regions and scenarios.      City of Ashland 7‐5 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  When the EMZs evacuate alone, the ETE is 1 hour and 55 minutes, on average.  EMZ 4 (Region  R04) has the longest ETE when comparing against other EMZ‐only evacuations (Regions R01  through R10), specifically for midweek, midday scenarios.  This is due to an anomaly caused by  the composition of demand for this region.  As shown in Table 3‐11, this EMZ has the third highest  number of residents and the second lowest number of employees and tourists combined.  As  discussed in Section 5, residents awaiting the return of a commuter have the longest mobilization  times and employees/tourists have the shortest.  Since this EMZ has the third most ‘slowest  mobilizers’ and the second least ‘fastest mobilizers’, it actually takes longer to reach the 90th  percentile ETE.  As a result, EMZ 4 has the longest 90th percentile ETE despite having a moderate  amount of total evacuating vehicles.   Alternatively, EMZ 5 has the shortest ETE when comparing against Regions R01 through R10.  This  EMZ has the lowest total number of evacuating vehicles, and has more tourists (fast mobilizers)  than residents (slow mobilizers).  When looking at Regions R11 through R18, regions wherein EMZs evacuate together, Scenario 4  has the longest ETE, specifically for Regions wherein EMZ 3 and EMZ 7, and/or EMZ 4, evacuate.   This is directly caused by the large number of commuting students evacuating from SOU.     7.5 Guidance on Using ETE Tables  The user first determines the percentile of population for which the ETE is sought (federal  guidance for nuclear emergencies calls for the 90th percentile).  The applicable value of ETE within  the chosen table may then be identified using the following procedure:  1. Identify the applicable Scenario:  • Season      Summer   Fall   • Day of Week   Midweek   Weekend  • Time of Day   Midday   Evening  While these Scenarios are designed, in aggregate, to represent conditions throughout the year,  some further clarification is warranted:  • The seasons are defined as follows:   Summer assumes that public schools are not in session.   Fall considers that public schools are in session.  • Time of Day: Midday implies the time over which most commuters are at work or are  travelling to/from work.  2. With the desired percentile ETE and Scenario identified, now identify the Evacuation Region:  • Determine which EMZ or combination of EMZs need to evacuate from Table 6‐1:    City of Ashland 7‐6 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0   Individual EMZs (R01 through R10)   Groupings/Combinations of EMZs (Region R11 through R18)  3. Determine the ETE Table based on the percentile selected.  Then, for the Scenario identified  in Step 1 and the Region identified in Step 2, proceed as follows:  • The columns of Table 7‐1 and Table 7‐2 are labeled with the Scenario numbers.  Identify  the proper column in the selected Table using the Scenario number defined in Step 1.  • Identify the row in this table that provides ETE values for the Region identified in Step 2.  • The unique data cell defined by the column and row so determined contains the desired  value of ETE expressed in Hours:Minutes.    Example  It is desired to identify the ETE for the following conditions:  • Wednesday, October 14th at 12:00 PM.  • It is sunny.  • The wildfire threatens northern Ashland only.  • The desired ETE is that value needed to evacuate 90 percent of the population from within  the impacted Region.  Table 7‐1 is applicable because the 90th percentile ETE is desired.  Proceed as follows:  1. Identify the Scenario as fall, midweek, midday conditions.  Entering Table 7‐1, it is seen  that this combination of circumstances describes Scenario 4.   2. In Table 6‐1, locate the Region that has northern Ashland only, Region R13.  3. In Table 7‐1, locate the data cell containing the value of ETE for Scenario 4 and Region  R13. This data cell is in column (4) and in the row for Region R13; it contains the ETE value  of 2:00.    City of Ashland 7‐7 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  Table 7‐1.  Time to Clear the Indicated Area of 90 Percent of the Affected Population     Summer Fall  Midweek Weekend Midweek  Weekend Midweek Weekend Midweek  Weekend  Scenario: (1) (2) (3) (4) (5) (6)  Region Midday Midday Evening Midday Midday Evening  R01 – EMZ 1 1:55 1:45 1:40 1:55 1:45 1:40  R02 – EMZ 2 1:55 1:50 1:45 1:55 1:50 1:45  R03 – EMZ 3 1:40 1:50 1:45 1:35 1:50 1:45  R04 – EMZ 4 2:00 1:55 1:55 2:00 1:55 1:55  R05 – EMZ 5 1:30 1:25 1:20 1:30 1:30 1:20  R06 – EMZ 6 1:50 1:50 1:50 1:45 1:50 1:50  R07 – EMZ 7 1:50 1:50 1:50 1:50 1:50 1:50  R08 – EMZ 8 1:50 1:55 1:50 1:50 1:55 1:50  R09 – EMZ 9 1:55 1:50 1:50 1:55 1:50 1:50  R10 – EMZ 10 1:55 1:55 1:55 1:55 1:55 1:55  R11 ‐ Western Ashland 1:50 1:50 1:45 1:35 1:50 1:45  R12 ‐ Eastern Ashland 1:50 1:50 1:50 1:55 1:50 1:50  R13 ‐ Northern Ashland 2:00 1:55 1:50 2:00 1:55 1:50  R14 ‐ Central Ashland 1:45 1:50 1:45 2:30 1:50 1:45  R15 ‐ Southern Ashland 2:05 1:55 1:55 2:45 1:55 1:55  R16 ‐ Northern and Central  Ashland 1:55 1:50 1:50 2:30 1:50 1:50  R17 ‐ Southern and Central  Ashland 1:55 1:50 1:50 1:50 1:50 1:50  R18 ‐ All EMZs 2:35 2:25 2:15 3:10 2:25 2:20                   City of Ashland 7‐8 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Table 7‐2.  Time to Clear the Indicated Area of 100 Percent of the Affected Population      Summer Fall  Midweek Weekend Midweek  Weekend Midweek Weekend Midweek  Weekend  Scenario: (1) (2) (3) (4) (5) (6)  Region Midday Midday Evening Midday Midday Evening  R01 – EMZ 1 4:00 4:00 4:00 4:00 4:00 4:00  R02 – EMZ 2 4:00 4:00 4:00 4:00 4:00 4:00  R03 – EMZ 3 4:00 4:00 4:00 4:00 4:00 4:00  R04 – EMZ 4 4:00 4:00 4:00 4:00 4:00 4:00  R05 – EMZ 5 4:00 4:00 4:00 4:00 4:00 4:00  R06 – EMZ 6 4:00 4:00 4:00 4:00 4:00 4:00  R07 – EMZ 7 4:00 4:00 4:00 4:00 4:00 4:00  R08 – EMZ 8 4:00 4:00 4:00 4:00 4:00 4:00  R09 – EMZ 9 4:00 4:00 4:00 4:00 4:00 4:00  R10 – EMZ 10 4:00 4:00 4:00 4:00 4:00 4:00  R11 ‐ Western Ashland 4:00 4:00 4:00 4:00 4:00 4:00  R12 ‐ Eastern Ashland 4:00 4:00 4:00 4:00 4:00 4:00  R13 ‐ Northern Ashland 4:00 4:00 4:00 4:00 4:00 4:00  R14 ‐ Central Ashland 4:00 4:00 4:00 4:00 4:00 4:00  R15 ‐ Southern Ashland 4:00 4:00 4:00 4:00 4:00 4:00  R16 ‐ Northern and Central  Ashland 4:00 4:00 4:00 4:00 4:00 4:00  R17 ‐ Southern and Central  Ashland 4:00 4:00 4:00 4:00 4:00 4:00  R18 ‐ All EMZs 4:00 4:00 4:00 4:00 4:00 4:00          City of Ashland 7‐9 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure 7‐1.  Study Area Shadow Region   City of Ashland 7‐10 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure 7‐2.  Congestion Patterns at 30 Minutes after the Advisory to Evacuate    City of Ashland 7‐11 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure 7‐3.  Congestion Patterns at 1 Hour after the Advisory to Evacuate    City of Ashland 7‐12 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure 7‐4.  Congestion Patterns at 2 Hours after the Advisory to Evacuate    City of Ashland 7‐13 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure 7‐5.  Congestion Patterns at 3 Hours after the Advisory to Evacuate    City of Ashland 7‐14 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure 7‐6.  Congestion Patterns at 3 Hours and 30 Minutes after the Advisory to Evacuate    City of Ashland 7‐15 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure 7‐7.  Congestion Patterns at 4 Hours after the Advisory to Evacuate    City of Ashland 7‐16 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure 7‐8.  Evacuation Time Estimates ‐ Scenario 1 for Region R18    0% 20% 40% 60% 80% 100% 0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 Pe r c e n t  of  To t a l  Ve h i c l e s Elapsed Time (h:mm) ETE and Trip Generation  Summer, Midweek, Midday (Scenario 1) Trip Generation ETE   City of Ashland 7‐17 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure 7‐9.  Evacuation Time Estimates ‐ Scenario 2 for Region R18  0% 20% 40% 60% 80% 100% 0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 Pe r c e n t  of  To t a l  Ve h i c l e s Elapsed Time (h:mm) ETE and Trip Generation  Summer, Weekend, Midday (Scenario 2) Trip Generation ETE   City of Ashland 7‐18 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0     Figure 7‐10.  Evacuation Time Estimates ‐ Scenario 3 for Region R18    0% 20% 40% 60% 80% 100% 0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 Pe r c e n t  of  To t a l  Ve h i c l e s Elapsed Time (h:mm) ETE and Trip Generation  Summer, Midweek, Weekend, Evening (Scenario 3) Trip Generation ETE   City of Ashland 7‐19 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure 7‐11.  Evacuation Time Estimates ‐ Scenario 4 for Region R18  0% 20% 40% 60% 80% 100% 0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 Pe r c e n t  of  To t a l  Ve h i c l e s Elapsed Time (h:mm) ETE and Trip Generation  Fall, Midweek, Midday (Scenario 4) Trip Generation ETE   City of Ashland 7‐20 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure 7‐12.  Evacuation Time Estimates ‐ Scenario 5 for Region R18  0% 20% 40% 60% 80% 100% 0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 Pe r c e n t  of  To t a l  Ve h i c l e s Elapsed Time (h:mm) ETE and Trip Generation  Fall, Weekend, Midday (Scenario 5) Trip Generation ETE   City of Ashland 7‐21 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0      Figure 7‐13.  Evacuation Time Estimates ‐ Scenario 6 for Region R18    0% 20% 40% 60% 80% 100% 0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 Pe r c e n t  of  To t a l  Ve h i c l e s Elapsed Time (h:mm) ETE and Trip Generation  Fall, Midweek, Weekend, Evening (Scenario 6) Trip Generation ETE   City of Ashland 8‐1 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  8 ACCESS IMPAIRED NEIGHBORHOODS  This section details the analyses of access impaired neighborhoods within and in proximity to the  City of Ashland. Access impaired neighborhoods are areas that could have difficulty evacuating  during a wildfire emergency due to limited or narrow evacuation routes, traffic bottlenecks,  extremely low traffic flow, etc. These neighborhoods are at a higher risk during an evacuation  and should be given special consideration when planning for emergencies that require  evacuation.  In June 2020, Ashland Fire and Rescue (AFR) teamed with The Wildfire Research Center (WiRē)  to perform a Rapid Wildfire Risk Assessment (RA) of the properties within the City of Ashland1.   The RA considered a number of risk factors associated with wildfires, including access (address  posting, ingress/egress, driveway width, and driveway length), background conditions (distance  to dangerous topography, slope, and parcel exposure), defensible space (defensible space and  other combustibles), and home ignition potential (roof, siding, and attachments). The RA was  conducted at the parcel level for properties within the City of Ashland.  As such, the analysis does  not include those properties and neighborhoods just outside of the city limits that could be  considered access impaired.  The following approach was used to determine the access impaired  neighborhoods within and in proximity to the City of Ashland.  8.1 Data Sources  The following datasets were used to determine which neighborhoods are access impaired:  Inside the city limits  In 2018, AFR collected RA data for the 6,799 parcels within the city limits.  The data collected by  the AFR was assessed for 31 wildfire‐vulnerability related attributes.    Outside the city limits   Address points for Jackson County from the Oregon GIS Portal3. These address points represent  the actual locations of structures and/or parcels.   Tax lots (aka parcels) for Jackson County from the Oregon GIS Portal4. The tax lot data includes  property type and vacancy information which was used to select the resident address points. The  tax lot was also used to determine neighborhood boundaries.   ESRI street network was used for network analysis in GIS to calculate the approximate driving  distance for each neighborhood. This data was used to help identify which areas have limited  ingress/egress routes.    1  The Wildfire Research Center Memorandum, dated June 29, 2020, subject titled “Rapid Wildfire Risk Assessment Data Scoring”.  3 https://gis.jacksoncounty.org/datasets/address-point 4 https://gis.jacksoncounty.org/datasets/tax-lots?geometry=-127.983%2C41.783%2C-117.530%2C43.201   City of Ashland 8‐2 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0   Wildfire risk dataset from Oregon Explorer Natural Resources Digital Library5. Data layers –  Wildfire Risk to People and Property6 and Estimated Housing Density7 – were used to select the  neighborhoods with relatively high wildfire risks and high density residential areas.  8.2 Analysis  The following methodology was used to determine which neighborhoods are access impaired  within and in proximity to the City of Ashland:  Inside the city limits  1. Each RA attribute was assigned a weighting factor and an overall risk rating based on the adjusted  WiRē’s scoring approach8.  Table 1 shows the overall risk rating was used to categorize each  parcel.  2. For this analysis, any parcels categorized as “Very High” or “Extreme” were considered to be  access impaired.  The results of the RA are displayed in Figure 8‐1, represented by parcel  centroids.  As shown in the figure, the majority of the access impaired neighborhoods within the  city limits are along the ridgeline to the south of the city.    Outside the city limits  1. Neighborhoods with low population densities were eliminated. Tax lots define the boundaries of  residential areas; however, some tax lots, especially those in urban area are too small to be used  as neighborhoods. Therefore, the tax lots were first aggregated to map books, which have a more  reasonable scale to be considered as neighborhoods, as shown in Figure 8‐2. For example, the  size of the map book in an urban area is generally smaller than the size of a map book in a  suburban or rural area. Next, these aggregated tax lots (neighborhoods) were then superimposed  with the Estimated Housing Density layer.  The neighborhoods in low density residential areas  were eliminated, as shown in Figure 8‐3.  At the end of this step, 144 neighborhoods remained.  2. Neighborhoods with low wildfire risks were removed.  The 144 neighborhoods with medium to  high housing densities were superimposed with the Wildfire Risk to People and Property data, as  shown in Figure 8‐4.  The neighborhoods in low wildfire risk areas were removed from the  analysis.  At the end of this step, 141 neighborhoods remained.    3. Identified the neighborhoods with limited means of egress. First, the resident address points were  aggregated to one central point per neighborhood, as shown in Figure 8‐5. This representative  point represents the “origin” of the neighborhood for the network analysis in GIS. A network  analysis was performed using the ESRI street data to determine the amount of roadway miles that  could be driven from each origin (neighborhood) within 10 minutes10.  Then a statistical analysis  was performed on the resulting roadway mileage for each neighborhood from the network    5 https://tools.oregonexplorer.info/OE_HtmlViewer/index.html?viewer=wildfireplanning# 6 Wildfire Risk to People and Property is the product of the likelihood and consequence of wildfire on housing unit density (Where People Live) and US Forest Service (USFS) private inholdings. This dataset considers the likelihood of fire (likelihood of burning), the susceptibility of assets to wildfire of different intensities, and the likelihood of those intensities. 7 Estimated Housing Density is from the Oakridge National Laboratory LandScan™ population data and was obtained from the 2013 West Wide Wildfire Risk Assessment. It was developed by integrating high-resolution nighttime lights imagery and local spatial data to identify population distributions. At approximately 1 km resolution, LandScan™ represents an ambient population (an average over 24 hours). Housing densities range from less than 1 housing unit per 40 acres, up to more than 3 housing units per acre. Areas that are outside of urban cores and adjacent to and within wildland vegetation are of primary concern in wildfire management. 8 For detailed information of the methodology, please refer to the WiRē Memorandum. 10 The average drive time to exit the city and its surrounding residential areas under normal conditions is within 10 minutes. As such, 10 minutes was chosen as the threshold for the network analysis.   City of Ashland 8‐3 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  analysis.  The mean and standard deviation were computed from the data.  Based on the empirical  rule, almost all observed data falls within three standard deviations from the mean for a normal  distribution.  Using this rule as our basis, we looked at those neighborhoods that fell beyond 1, 2,  and 3 standard deviations from the mean.  All of the data fell within 3 standard deviations.  All  but 2 neighborhoods fell within 2 standard deviations.  Lastly, all but 16 neighborhoods fell within  1 standard deviation.  (Meaning 16 neighborhoods fall beyond 1 standard deviation from the  mean.)  These 16 ‘outlier’ neighborhoods have less roadway milage within a 10 minute driving  time than the remaining 125 neighborhoods.  So, in comparison to the rest of the neighborhoods  in the analysis, these 16 neighborhoods are considered to have limited means of egress.  Among  the 16 access impaired neighborhoods, 11 of them are outside of the city limits.  4. The neighborhood boundaries from Step 3 were refined.  Large portions of uninhabited areas  (based on aerial imagery and resident address points) were removed from the boundaries of the  11 neighborhoods. Figure 8‐6 shows the 11 neighborhoods, with refined boundaries, that were  selected as access impaired neighborhoods outside of the city limits.   Figure 8‐7 shows the results of both the inner and outer city limits access impaired neighborhood analysis.   The RA results have been aggregated into map books, to be consistent with the outer city limits analysis,   The median overall risk score has been assigned to map books that contain multiple scores.    8.3 ETE Results, Safe Refuge Areas, and Evacuation Signage  Under a fall weekday, midday scenario for an evacuation of all EMZs (worst case scenario), it  takes all of these areas 3 hours and 30 minutes to clear of congestion, as shown in Figure 7‐6.   These areas can be fully evacuated in 4 hours.  Depending on the wildfire situation at hand, these  neighborhoods may require early notification to have sufficient time to evacuate before their  safety is at risk.  Given the extent of the area considered as access impaired, no safe refuge areas large enough to  safely hold this many people, in a centralized location, could be identified.    Consideration should be given regarding placement of evacuation signage, in accordance with  the MUTCD (see Section 11.3), along Frank Hill Rd, Ashland Mine Rd, Granite St, Ashland Loop  Rd, Morton St, Terrace St, Elkader St, Highwood Dr, Pinecrest Terrace, Timberlake Dr, Emigrant  Creek Rd, and E Nevada St to guide evacuees out of these neighborhoods.     Table 1. Overall Risk Rating  Risk Level Minimum Score Maximum Score  Low 30 320  Moderate 321 425  High 426 520  Very High 521 565  Extreme 566 1,000      City of Ashland 8‐4 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure 8‐1. Access Impaired Neighborhoods with the City Limits    City of Ashland 8‐5 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure 8‐2. Aggregated Tax Lots    City of Ashland 8‐6 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure 8‐3. Neighborhoods without Low Density Resident Areas    City of Ashland 8‐7 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure 8‐4.  Neighborhoods without Low Density Resident Areas and Moderate to Very High Wildfire Risk to People and Property    City of Ashland 8‐8 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure 8‐5.  Resident Address Points    City of Ashland 8‐9 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure 8‐6.  Access Impaired Neighborhoods outside of the City Limits    City of Ashland 8‐10 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure 8‐7.  Combined Access Impaired Neighborhoods     City of Ashland 9‐1 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  9 TRANSIT‐DEPENDENT AND SPECIAL FACILITY EVACUATION TIME ESTIMATES  This section details the analyses applied and the results obtained in the form of evacuation time  estimates for transit vehicles. The demand for transit service reflects the needs of two population  groups:  • residents with no vehicles available; and  • residents of special facilities such as schools and medical facilities.  These transit vehicles mix with the general evacuation traffic that is comprised mostly of  “passenger cars” (pc’s). The presence of each transit vehicle in the evacuating traffic stream is  represented within the modeling paradigm described in Appendix D as equivalent to two pc’s.   This equivalence factor represents the longer size and more sluggish operating characteristics of  a transit vehicle, relative to those of a pc.    Transit vehicles must be mobilized in preparation for their respective evacuation missions.   Specifically:  • Bus drivers must be alerted  • They must travel to the bus depot  • They must be briefed there and assigned to a route or facility.  These activities consume time. It is estimated that bus mobilization time will average  approximately 90 minutes extending from the advisory to evacuate to the time when buses first  arrive schools, medical facilities, and transit dependent bus routes.  See assumption 6 in Section  2.3.    During this mobilization period, other mobilization activities are taking place. One of these is the  action taken by parents, neighbors, relatives and friends to pick up children from school prior to  the arrival of buses, so that they may join their families. Virtually all studies of evacuations have  concluded that this “bonding” process of uniting families is universally prevalent during  emergencies and should be anticipated in the planning process. As discussed in Section 2, this  study assumes a rapidly escalating wildfire. However, local stakeholders have indicated that  children will likely be picked up by parents or guardians prior to an evacuation. Emergency plans  for the schools could not be obtained.  It is generally safer if all students are loaded onto buses  and evacuated so that all students can be accounted for; when parents pick up students, it can  be a logistical nightmare especially during a high pressure situation.  In addition, if buses are kept  close to the school, or are on site, it is possible that buses will be loaded and evacuated before  many parents even arrive.  Since preschools and daycare facilities often do not have their own  buses and generally low enrollments, it is more feasible and safer if parents pick up these children  prior to evacuating.  As such, it is assumed that children at preschool and daycare facilities are  picked up by parents or guardians prior to evacuation and that the time to perform this activity  is included in the trip generation times discussed in Section 5. This report provides estimates of  buses under the assumption that no children will be picked up by their parents, to present an  upper bound estimate of buses required.     City of Ashland 9‐2 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0   The procedure for computing transit dependent ETE is to:  • Estimate demand for transit service  • Estimate time to perform all transit functions  • Estimate route travel times out of the area at risk.  9.1 ETEs for Transit Dependent People  As discussed in Section 11, there are 4 bus routes designed to service the transit dependent  people residing in the EMZs. During an emergency, buses will need to be dispatched to help those  who need transportation assistance.  These routes were used as representative routes to gather  this population.  It is likely that during an actual evacuation, people will call the City of Ashland  Police Department and a bus will be dispatched and travel directly to the houses of those who  need assistance.  If there is a shortfall of transportation resources, buses should return to the  EMZs after getting their initial passengers to safety.   When school evacuation needs are satisfied, subsequent assignments of buses to service the  transit‐dependent population should be sensitive to their mobilization time. Clearly, the buses  should be dispatched after people have completed their mobilization activities and are in a  position to board the buses when they arrive along the bus transit route.    Figure 9‐1 presents the chronology of events relevant to transit operations. The elapsed time for  each activity will now be discussed with reference to Figure 9‐1.  Activity:  Mobilize Drivers (A→B→C)  Mobilization is the elapsed time from the Advisory to Evacuate until the time the buses arrive at  the facility to be evacuated. It is assumed that for a rapidly escalating emergency with no  observable indication before the fact, drivers would likely require 90 minutes to be contacted, to  travel to the depot, be briefed, and to travel to the transit‐dependent facilities/route for schools,  medical facilities, and transit dependent individuals.  Activity:  Board Passengers (C→D)  A loading time of 15 minutes for school buses is used.  Loading times of 1 minute, 5 minutes, and  30 minutes per patient are assumed for ambulatory patients, wheelchair bound patients, and  bedridden patients, respectively.  For multiple stops along a pick‐up route (transit‐dependent bus routes) estimation of travel time  must allow for the delay associated with stopping and starting at each pick‐up point. The time, t,  required for a bus to decelerate at a rate, “a”, expressed in ft/sec/sec, from a speed, “v”,  expressed in ft/sec, to a stop, is t = v/a. Assuming the same acceleration rate and final speed  following the stop yields a total time, T, to service boarding passengers:  𝑇ൌ𝑡൅𝐵൅𝑡ൌ𝐵൅2𝑡ൌ𝐵൅ଶ௩ ௔  ,  Where B = Dwell time to service passengers. The total distance, “s” in feet, travelled during the  deceleration and acceleration activities is: s = v2/a. If the bus had not stopped to service  passengers, but had continued to travel at speed, v, then its travel time over the distance, s,    City of Ashland 9‐3 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  would be: s/v = v/a. Then the total delay (i.e. pickup time, P) to service passengers is:   𝑃ൌ𝑇െ௩ ௔ ൌ𝐵൅௩ ௔  Assigning reasonable estimates:  • B = 50 seconds: a generous value for a single passenger, carrying personal items, to  board per stop  • v = 25 mph = 37 ft/sec  • a = 4 ft/sec/sec, a moderate average rate  Then, P ≈ 1 minute per stop. Allowing 30 minutes pick‐up time per bus run implies 30 stops per  run.  Activity:  Travel to EMZ Boundaries (D→E)  Transportation resources available were provided by the city emergency management  personnel. Table 9‐1 summarizes the information received.  Also included in the table are the  number of buses needed to evacuate schools, medical facilities, and transit‐dependent  population.  These numbers indicate there are not sufficient resources available to evacuate  everyone in a single wave.  School Evacuation  The buses servicing the schools are ready to begin their evacuation trips at 75 minutes after the  advisory to evacuate – 90 minutes mobilization time plus 15 minutes loading time.  The UNITES  software, discussed in Section 1.3, was used to define bus routes along the most likely path from  a school being evacuated to the evacuation boundary. This is done in UNITES by interactively  selecting the series of nodes from the school to the EMZ boundary. Each bus route is given an  identification number and is written to the DYNEV II input stream. DYNEV computes the route  length and outputs the average speed for each 5‐minute interval, for each bus route. The  specified bus routes are documented in Table 11‐2 (refer to the maps of the link‐node analysis  network in Appendix H for node locations). Data provided by DYNEV during the appropriate  timeframe depending on the mobilization and loading times (i.e., 90 minutes after the advisory  to evacuate) were used to compute the average speed for each route, as follows:  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑝𝑒𝑒𝑑 ൬𝑚𝑖. ℎ𝑟൰ ൌ ⎣⎢⎢⎢⎢⎢ ⎡ ∑𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙𝑖𝑛𝑘 𝑖 ሺ𝑚𝑖ሻ௡௜ୀଵ ∑ቐ𝐷𝑒𝑙𝑎𝑦 𝑜𝑛 𝑙𝑖𝑛𝑘 𝑖 ሺ𝑚𝑖𝑛.ሻ ൅ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙𝑖𝑛𝑘 𝑖 ሺ𝑚𝑖.ሻ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑝𝑒𝑒𝑑 𝑜𝑛 𝑙𝑖𝑛𝑘 𝑖 ቀ𝑚𝑖.ℎ𝑟.ቁ ൈ 60 𝑚𝑖𝑛. 1 ℎ𝑟.ቑ௡௜ୀଵ ⎦⎥⎥⎥⎥⎥ ⎤ ൈ 60 𝑚𝑖𝑛. 1 ℎ𝑟.    The average speed computed (using this methodology) for the buses servicing each of the schools  in the EMZs are shown in the ETE tables for each facility. The travel time to the boundary of the    City of Ashland 9‐4 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  EMZ was computed for each bus using the computed average speed and the distance to the  boundary along the most likely route out. The maximum bus speed limit within the study area  was assumed to be 55 mph.  Table 9‐2 presents the evacuation time estimates (rounded up to the nearest 5 minutes) for  schools in the EMZs. The evacuation time out of the EMZs can be computed as the sum of time  associated with Activities A→B→C, C→D, and D→E (For example: 90 min. + 15 + 45 = 2:30 for  Helman Elementary School).  Evacuation of Transit‐Dependent Population  The buses dispatched from the depots to service the transit‐dependent evacuees will be  scheduled so that they arrive at their respective routes after their passengers have completed  their mobilization. As shown in Figure 5‐8 (Residents Without Commuters), approximately 85%  of all evacuees will complete their mobilization when the buses begin their routes at 90 minutes  after the evacuation advisory.   Those buses servicing the transit‐dependent evacuees will first travel through the EMZs, then  proceed out of the area at risk.  It is assumed that residents will walk to and congregate along  the roadways these routes traverse or will be picked up directly from their home, and that they  can arrive at the routes within 90 minutes after the evacuation advisory.   As previously discussed, a pickup time of 30 minutes is estimated for 30 individual stops to pick  up passengers, with an average of one minute of delay associated with each stop.   The travel distance along the respective pick‐up routes within the EMZs is estimated using the  UNITES software. Bus travel times within the EMZs are computed using average speeds  computed by DYNEV, using the aforementioned methodology that was used for school  evacuation.  Table 9‐3 present the transit‐dependent population evacuation time estimates for each bus route  calculated using the above procedures.  ETE are rounded up to the nearest 5 minutes.  For example, the ETE for the bus on the route servicing EMZ 1, EMZ 2 and EMZ 10 is computed  as 90 + 35 + 30 = 2:35. Here, 35 minutes is the time to travel 5.9 miles at 15.0 mph, the average  speed output by the model for this route at 90 minutes.   Evacuation of Medical Facilities  The transit vehicle operations for this group are similar to those for school evacuation except:  • Buses are assigned on the basis of 30 patients to allow for staff to accompany the  patients.  • Basic Life Support (BLS) (ambulances) can hold 2 patient per ambulance.  • Wheelchair transport vehicles can accommodate 15 patients per wheelchair bus   Table 3‐7 indicates that 6 bus runs, 6 wheelchair bus runs, and 32 ambulance runs are needed to  service the 3 medical facilities within the EMZs.   It is estimated that mobilization time averages 90 minutes. Specially trained medical support staff  (working their regular shift) will be on site to assist in the evacuation of patients.     City of Ashland 9‐5 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  Table 9‐4 summarize the ETE for medical facilities within the EMZs for normal. The distance from  each medical facility to the boundary of the EMZs was measured using GIS software and is  provided in Table 9‐4 (Dist. to EMZ Bdry). Average speeds output by the DYNEV model for Scenario  4 Region R18, capped at 55 mph, are used to compute travel time out of the area at risk. The  travel time out of the area at risk (Travel Time to Safety) is computed by dividing the travel  distance by the average travel speed. The ETE is the sum of the mobilization time, total passenger  loading time, and travel time to safety. Concurrent loading on multiple buses, wheelchair buses,  and ambulances at capacity is assumed. All ETE are rounded to the nearest 5 minutes. For  example, the calculation of ETE for Asante Ashland Community Hospital’s ambulatory patients  are:  ETE:  90 + 30 + 5 = 125 min. or 2:05.    City of Ashland 9‐6 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  Table 9‐1.  Summary of Transportation Needs and Resources  Transportation  Resource Buses  Wheelchair  Buses Ambulances  Resources Available  Ashland School District 19 0 0  Ashland Fire & Rescue 0 0 2  Jackson County Fire District 0 0 2‐4*  TOTAL: 19 0 2  Resources Needed  Medical Facilities (Table 3‐7): 6 6 32  Schools (Table 3‐9): 75 0 0  Transit‐Dependent Population (Table 11‐1): 4 0 0  TOTAL TRANSPORTATION NEEDS: 85 6 32    *Note: 2‐4 Ambulances can be made available from Jackson County Fire Department in the case that more are needed.                  City of Ashland 9‐7 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  Table 9‐2.  School Evacuation Time Estimates  School  Driver  Mobilization  Time (min)  Loading  Time  (min)  Dist. To  Safety  (mi)  Average  Speed  (mph)  Travel  Time to  Safety  (min)  ETE  (hr:min)  City of Ashland, OR  Helman Elementary School 90 15 2.8 3.7 45 2:30  Ashland High School 90 15 3.2 2.6 74 3:00  Walker Elementary School 90 15 4.0 10.4 24 2:10  Ashland Middle School 90 15 5.3 11.1 29 2:15  John Muir Elementary School 90 15 0.3 10.1 2 1:50  Bellview Elementary School 90 15 6.9 21.1 20 2:05  Southern Oregon University 90 15 6.1 12.1 30 2:15  Maximum ETE: 3:00  Average ETE: 2:20                          City of Ashland 9‐8 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Table 9‐3.  Transit‐Dependent Evacuation Time Estimates  Bus Route  Number Bus Route   Number of  Buses  Mobilization  (min)  Route  Length  (miles)  Spee d  (mph)  Route  Trave l Time  (min)  Picku p  Time  (min)  ETE  (hr:min )   1 Servicing EMZ 1, EMZ 2 and EMZ 10 1 90 5.88 10.1 35 30 2:35  2 Servicing EMZ 3 and EMZ 4 1 90 3.98 4.8 50 30 2:50  3 Servicing EMZ 5 and EMZ 6 1 90 4.26 10.1 26 30 2:30  4 Servicing EMZ 7, EMZ 8 and EMZ 9 1 90 3.82 5.2 45 30 2:45  Maximum ETE: 2:50      City of Ashland 9‐9 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  Table 9‐4.  Special Facility Evacuation Time Estimates  Medical Facility Patient  Mobilization  (min)  Loading  Rate  (min per  person) People   Max  Loading  Time  (min)  Dist.  To  EMZ  Bdry   (mi)  Speed  (mph)  Travel  Time  to  Safety  (min)  ETE  (hr:min)   Asante Ashland Community Hospital  Ambulatory 90 1 63 30 2.3 26.6 5 2:05  Wheelchair Bound 90 5 31 75 2.3 29.8 5 2:50  Bedridden 90 30 31 60 2.3 22.4 6 2:40  Ashland Surgery Center  Ambulatory 90 1 13 13 2.0 20.7 6 1:50  Wheelchair Bound 90 5 6 30 2.0 38.3 3 2:05  Bedridden 90 30 6 60 2.0 38.2 3 2:35  Linda Vista Nursing Home & Rehab Center  Ambulatory 90 1 50 30 2.1 38.3 3 2:05  Wheelchair Bound 90 5 25 75 2.1 38.2 3 2:50  Bedridden 90 30 25 60 2.1 38.2 3 2:35  Maximum ETE:  2:50  Average ETE:  2:25                            City of Ashland 9‐10 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0                Event  A Advisory to Evacuate  B Bus Dispatched from Depot  C Bus Arrives at Facility/Transit Dependent Person’s Home   D Bus Departs Facility/Transit Dependent Person’s Home  E Bus Exits Area at Risk  Activity  AB Driver Mobilization  BC Travel to Facility or Transit Dependent Person’s Home  CD Passengers Board the Bus  DE Bus Travels Toward At‐Risk Area Boundary  Figure 9‐1.  Chronology of Transit Evacuation Operations  A B C D E F G  Time    City of Ashland 10‐1 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  10 TRAFFIC MANAGEMENT STRATEGY   This section discusses the suggested Traffic Management Plan (TMP) that is designed to  expedite the movement of evacuating traffic.  The resources required to implement this  strategy include:  • Personnel with the capabilities of performing the planned control functions of traffic  guides (preferably, not necessarily, law enforcement officers).  • Guidance is provided by the Manual of Uniform Traffic Control Devices (MUTCD)  published by the Federal Highway Administration (FHWA) of the U.S.D.O.T. All state and  most county transportation agencies have access to the MUTCD, which is available on‐ line: http://mutcd.fhwa.dot.gov which provides access to the official PDF version.  • A written plan that defines all Traffic Control Point (TCP) and Access Control Point (ACP)  locations, provides necessary details and is documented in a format that is readily  understood by those assigned to perform traffic control.  The functions to be performed in the field are:  1. Facilitate evacuating traffic movements that safely expedite travel out of the area at  risk.   2. Discourage traffic movements that move evacuating vehicles in a direction which takes  them significantly closer to the area of risk, or which interferes with the efficient flow of  other evacuees.  The terms "facilitate" and "discourage" are employed rather than "enforce" and "prohibit" to  indicate the need for flexibility in performing the traffic control function.  There are always  legitimate reasons for a driver to prefer a direction other than that indicated.   For example:  • A driver may be traveling home from work or from another location, to join other family  members prior to evacuating.  • An evacuating driver may be travelling to pick up a relative, or other evacuees.  • The driver may be an emergency worker en route to perform an important activity.  ACPs are established during the evacuation to stop the flow of external traffic through the  study area. Doing so reserves the capacity on major through routes for evacuees rather than  the traffic that is passing through the area.   The implementation of a TMP must also be flexible enough for the application of sound  judgment by the traffic guide.  The TMP for this study is the outcome of the following process:  1. Evacuation simulations were run using DYNEV II to predict traffic congestion during  evacuation (see Section 7.2 and Figures 7‐2 through 7‐7).  2. These simulations help to identify the best routing and critical intersections that  experience pronounced congestion during evacuation. Any critical intersections that  would benefit from traffic or access control are suggested as TCPs. One TCP was    City of Ashland 10‐2 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  identified which would benefit the evacuation:  the intersection of OR‐99 and Crowson  Rd.  While the overall ETE remained the same with the placement of this TCP, localized  congestion decreased.  As a result, this location is recommended as a TCP.  3. Prioritization of TCPs and ACPs.  a. Application of traffic and access control at some TCPs and ACPs will have a more  pronounced influence on expediting traffic movements than at other TCPs and  ACPs. For example, TCPs controlling traffic originating from areas in close  proximity to the wildfire could have a more beneficial effect on minimizing  potential exposure to threat than those TCPs located far from the wildfire. These  priorities should be assigned by city emergency management representatives  and by law enforcement personnel.  10.1 Assumptions  The ETE calculations documented in Sections 7 and 9 assume that the recommended TMP is  implemented during evacuation.  The ETE calculations reflect the assumption that all “external‐external” trips are interdicted and  diverted after 2 hours have elapsed from the Advisory to Evacuate (ATE) to discourage through  travelers from using major through routes that traverse the study area. Dynamic and variable  message signs should be strategically positioned outside of the study area at logical diversion  points to attempt to divert traffic away from the area of risk. As such, it is assumed pass‐ through traffic that traverses the study area will diminish over the 2‐hour period.  All transit vehicles and other responders entering the EMZs to support the evacuation are  assumed to be unhindered by personnel manning TCPs and ACPs.   The ETE analysis treated the controlled intersection that is recommended as a TCP location as  being controlled by an actuated signal. In Appendix H, Table H‐2 identifies those intersections  that were modeled as TCPs.  Study assumptions 12 and 13 in Section 2.3 discuss additional TCP and ACP operational  assumptions.    City of Ashland 10‐3 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  10.2 Additional Considerations    The use of Intelligent Transportation Systems (ITS) technologies can reduce the manpower and  equipment needs, while still facilitating the evacuation process. Dynamic Message Signs (DMS)  can be placed within the EMZs to provide information to travelers regarding traffic conditions,  route selection, congregation point, and reception center information. DMS placed outside of  the EMZs will warn motorists to avoid using routes that may conflict with the flow of evacuees  away from the wildfire. Highway Advisory Radio (HAR) can be used to broadcast information to  evacuees during egress through their vehicles stereo systems. Automated Travel Information  Systems (ATIS) can also be used to provide evacuees with information. Internet websites can  provide traffic and evacuation route information before the evacuee begins their trip, while the  onboard navigation systems (GPS units) and smartphones can be used to provide information  during evacuation trip.  There are only several examples of how ITS technologies can benefit the evacuation process.  Considerations should be given that ITS technologies can be used to facilitate the evacuation  process, and any additional signage placed should consider evacuation needs.    City of Ashland 11‐1 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  11 EVACUATION ROUTES AND EVACUATION SIGNAGE  This section documents major evacuation routes within the study area, possible bus routes, and  suggestions on evacuation signage based on current traffic engineering standards.  11.1 Evacuation Routes  Evacuation routes are responsible for transporting EMZ evacuees and transit dependent  evacuees (schools, medical facilities, and residents who do not own or have access to a private  vehicle) to safety.   Evacuees will select routes within the EMZ in such a way as to minimize their exposure to risk.  This expectation is met by the DYNEV II model routing traffic away from the location of the  wildfire to the extent practicable. The DTRAD model satisfies this behavior by routing traffic so  as to balance traffic demand relative to the available highway capacity to the extent possible. See  Appendices B through D for further discussion. The major evacuation routes for the study area  are presented in Figure 11‐1. These routes will be used by the general population evacuating in  private vehicles and by the transit‐dependent population evacuating in buses. Transit‐dependent  evacuees will be routed to safety, outside of the evacuation area. The general population may  evacuate to some alternate destination (e.g., lodging facilities, relative’s home, campgrounds)  outside the EMZ.  The 4 representative bus routes shown graphically in Figure 11‐2 and described in Table 11‐1  were designed by KLD to service the transit dependent population in each EMZ. This does not  imply that these exact routes would be used in an emergency. It is assumed that residents will  walk to and congregate along the existing evacuation routes to flag down a bus.    The specified bus routes for all the transit‐dependent population are documented in Table 11‐2  (refer to the maps of the link‐node analysis network in Appendix H for node locations). This study  does not consider the transport of evacuees from the boundary of the evacuation region to  reception centers or congregate care centers.  Schools and medical facilities were routed along the most likely path from the facility being  evacuated to the boundary of the evacuation region. A single route was used for facilities that  would use a similar path for evacuation.   The City of Ashland should consider identifying safe shelter locations within the EMZ in an event  that an evacuation is not feasible (i.e. the fire is moving faster than an evacuation would take).   When a wildfire threat is perceived, emergency officials need to make a protective action  decision to either evacuate or shelter (at a safe refuge location) the population in imminent  danger. Safe refuge areas (i.e. hardened structures, safe open areas, water bodies) should be  predetermined and locally known in the case of an emergency.       City of Ashland 11‐2 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  See Section 3.6 for more information on the transit dependent population and Section 9 for  transit dependent ETE calculations.   11.2 Evacuation Signage  Locations of evacuation signs installed along the routes shown in Figure 11‐1 for “straight‐ahead”  confirmation should be in accordance with Part 2, Chapter 2N, Section 2N.03 of the 2009  MUTCD2.  These signs should display a blue circular symbol on a white square sign with a white  directional arrow and a white legend “EVACUATION ROUTE” within the blue circular symbol, as  shown in Figure 11‐3.  A straight, vertical arrow pointing upward to indicate that evacuees should  continue their travel along that route should be placed on I‐5, OR‐66, and OR‐99.  These  evacuation signs should be installed at one‐mile spacing along major evacuation routes.    Other signing may be placed on the approaches to major intersections to indicate the direction  of evacuation travel through the intersection.  The MUTCD states that these signs should be  installed 150 to 300 feet in advance of the intersection and should indicate the turn direction  required to follow the evacuation route.  These signs should display a straight horizontal arrow  pointing to the left or right, or a bent arrow pointing to the left or right, depending on the  geometrics of the approach and of the intersection, to indicate the appropriate turn movement  through the intersection needed to follow the recommended evacuation route.  A through  movement will be shown as described in the previous paragraph.    Such directional signing may also be placed at the exits of special facilities to guide evacuees  toward or along recommended evacuation routes.  These facilities include schools, medical  facilities, and major recreational areas, as specified in Appendix E.    Part 2, Chapter 2N of the 2009 MUTCD presents guidelines for implementing emergency  management signs.  It states that “emergency management signs shall not permanently  displace any of the standard signs that are normally applicable.”  While this report does not  specify the precise locations of every recommended road sign, the installation of every  evacuation route sign must comply with the guidance provided in the MUTCD.     2 Manual on Uniform Traffic Control Devices for Streets and Highways, 2009 Edition, US Department of Transportation, Federal Highway Administration     City of Ashland 11‐3 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Table 11‐1. Summary of Transit‐Dependent Bus Routes  Route  No. of  Buses Route Description  Length  (mi.)  1 1 Transit Dependent Bus Route servicing EMZ 1, EMZ 2, and EMZ 10 5.88  2 1 Transit Dependent Bus Route servicing EMZ 3 and EMZ 4 3.98  3 1 Transit Dependent Bus Route servicing EMZ 5 and EMZ 6 4.26  4 1 Transit Dependent Bus Route servicing EMZ 7, EMZ 8, and EMZ 9 3.82  Total: 4             City of Ashland 11‐4 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  Table 11‐2. Bus Route Description    Bus  Route  Number Description Nodes Traversed from Route Start to EPZ Boundary  1  Walker Elementary School 124, 108, 110, 113, 323, 9, 7, 8  2  Helman Elementary School 161, 162, 261, 50, 51, 52, 159, 53, 54, 55  4  Ashland High School 127, 41, 233, 42, 237, 240, 43, 44, 148, 238, 45, 227, 46, 254, 47, 241, 48, 49, 50, 51, 52,  159, 53, 54, 55  6  John Muir Outdoor School 124, 108, 110, 113, 323, 9, 7, 8  7  Bellview Elementary School 40, 308, 307, 9, 7, 8  9  Ashland Surgery Center 51, 52, 159, 53, 54, 55  10  Linda Vista Nursing and Rehab  Center 51, 52, 159, 53, 54, 55  11  Oregon Child Development 215, 48, 49, 50, 51, 52, 159, 53, 54, 55  12  Reflective Hearts Childcare 133, 143, 134, 148, 238, 45, 227, 46, 254, 47, 241, 48, 49, 50, 51, 52, 159, 53, 54, 55  13  Stone Soup Playschool 114, 311, 312, 113, 323, 9, 7, 8  14  Pea Pod Village 143, 134, 148, 238, 45, 227, 46, 254, 47, 241, 48, 49, 50, 51, 52, 159, 53, 54, 55  15  Childrens World 233, 42, 237, 240, 43, 44, 148, 238, 45, 227, 46, 254, 47, 241, 48, 49, 50, 51, 52, 159, 53,  54, 55  16  Memory Lane Preschool 109, 108, 110, 113, 323, 9, 7, 8  17  Head Start 108, 110, 113, 323, 9, 7, 8    City of Ashland 11‐5 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  18  Rain and Shine Preschool 267, 111, 275, 315, 110, 113, 323, 9, 7, 8  3  Transit Dependent Bus Route for  EMZ 1, EMZ 2, and EMZ 10 290, 284, 283, 149, 150, 49, 50, 51, 52, 159, 53, 54, 55  20  Transit Dependent Bus Route for  EMZ 3 and EMZ 4 268, 135, 235, 234, 41, 339, 123, 70, 108, 110, 113, 323, 9, 7, 8  23  Transit Dependent Bus Route for  EMZ 5 and EMZ 6 275, 315, 110, 113, 323, 9, 7, 8  26  Transit Dependent Bus Route for  EMZ 7, EMZ 8, and EMZ 9 226, 224, 225, 144, 147, 145, 122, 121, 146, 49, 50, 51, 52, 159, 53, 54, 55  8  Asante Ashland Community Hospital 119, 51, 52, 159, 53, 54, 55  5  Ashland Middle School 124, 108, 110, 113, 323, 9, 7, 8  27  TD Zone 10 281, 282, 161, 162, 261, 50, 51, 52, 159, 53, 54, 55  28  Southern Oregon University 123, 70, 108, 110, 113, 323, 9, 7, 8    City of Ashland 11‐6 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure 11‐1.  Evacuation Route Map    City of Ashland 11‐7 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure 11‐2. Transit‐Dependent Bus Routes Servicing the EMZ    City of Ashland 11‐8 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0          Figure 11‐3.  Evacuation Route Sign Example  APPENDIX A  Glossary of Traffic Engineering Terms    City of Ashland A‐1 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  A. GLOSSARY OF TRAFFIC ENGINEERING TERMS  This appendix provides a glossary of traffic engineering terms that are used throughout this  report.   Table A‐1.  Glossary of Traffic Engineering Terms  Term Definition  Analysis Network     A graphical representation of the geometric topology of a physical  roadway system, which is comprised of directional links and  nodes.  Link A network link represents a specific, one‐directional section of  roadway.  A link has both physical (length, number of lanes,  topology, etc.) and operational (turn movement percentages,  service rate, free‐flow speed) characteristics.  Measures of Effectiveness Statistics describing traffic operations on a roadway network.  Node A network node generally represents an intersection of network  links.  A node has control characteristics, i.e., the allocation of  service time to each approach link.  Origin A location attached to a network link, within the EMZ or Shadow  Region, where trips are generated at a specified rate in vehicles  per hour (vph).  These trips enter the roadway system to travel to  their respective destinations.  Prevailing Roadway and  Traffic Conditions       Relates to the physical features of the roadway, the nature (e.g.,  composition) of traffic on the roadway and the ambient conditions  (weather, visibility, pavement conditions, etc.).  Service Rate     Maximum rate at which vehicles, executing a specific turn  maneuver, can be discharged from a section of roadway at the  prevailing conditions, expressed in vehicles per second (vps) or  vehicles per hour (vph).  Service Volume     Maximum number of vehicles which can pass over a section of  roadway in one direction during a specified time period with  operating conditions at a specified Level of Service (The Service  Volume at the upper bound of Level of Service, E, equals Capacity).  Service Volume is usually expressed as vehicles per hour (vph).  Signal Cycle Length  The total elapsed time to display all signal indications, in sequence.  The cycle length is expressed in seconds.    City of Ashland A‐2 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Term Definition  Signal Interval         A single combination of signal indications.  The interval duration is  expressed in seconds.  A signal phase is comprised of a sequence  of signal intervals, usually green, yellow, red.        Signal Phase      A set of signal indications (and intervals) which services a  particular combination of traffic movements on selected  approaches to the intersection.  The phase duration is expressed  in seconds.  Traffic (Trip) Assignment      A process of assigning traffic to paths of travel in such a way as to  satisfy all trip objectives (i.e., the desire of each vehicle to travel  from a specified origin in the network to a specified destination)  and to optimize some stated objective or combination of  objectives.  In general, the objective is stated in terms of  minimizing a generalized "cost".  For example, "cost" may be  expressed in terms of travel time.  Traffic Density     The number of vehicles that occupy one lane of a roadway section  of specified length at a point in time, expressed as vehicles per  mile (vpm).  Traffic (Trip) Distribution      A process for determining the destinations of all traffic generated  at the origins.  The result often takes the form of a Trip Table,  which is a matrix of origin‐destination traffic volumes.  Traffic Simulation    A computer model designed to replicate the real‐world operation  of vehicles on a roadway network, so as to provide statistics  describing traffic performance. These statistics are called  Measures of Effectiveness (MOE).  Traffic Volume    The number of vehicles that pass over a section of roadway in one  direction, expressed in vehicles per hour (vph).  Where applicable,  traffic volume may be stratified by turn movement.  Travel Mode Distinguishes between private auto, bus, rail, pedestrian and air  travel modes.  Trip Table or Origin‐ Destination Matrix    A rectangular matrix or table, whose entries contain the number  of trips generated at each specified origin, during a specified time  period, that are attracted to (and travel toward) each of its  specified destinations.  These values are expressed in vehicles per  hour (vph) or in vehicles.    City of Ashland A‐3 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Term Definition  Turning Capacity    The capacity associated with that component of the traffic stream  which executes a specified turn maneuver from an approach at an  intersection.    APPENDIX B  DTRAD: Dynamic Traffic Assignment and Distribution Model   City of Ashland B‐1 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  B. DYNAMIC TRAFFIC ASSIGNMENT AND DISTRIBUTION MODEL  This appendix describes the integrated dynamic trip assignment and distribution model named  DTRAD (Dynamic Traffic Assignment and Distribution) that is expressly designed for use in  analyzing evacuation scenarios.  DTRAD employs logit‐based path‐choice principles and is one  of the models of the DYNEV II System. The DTRAD module implements path‐based Dynamic  Traffic Assignment (DTA) so that time dependent Origin‐Destination (OD) trips are “assigned” to  routes over the network based on prevailing traffic conditions.  To apply the DYNEV II System, the analyst must specify the highway network, link capacity  information, the time‐varying volume of traffic generated at all origin centroids and, optionally,  a set of accessible candidate destination nodes on the periphery of the EMZ for selected  origins.  DTRAD calculates the optimal dynamic trip distribution (i.e., trip destinations) and the  optimal dynamic trip assignment (i.e., trip routing) of the traffic generated at each origin node  traveling to its set of candidate destination nodes, so as to minimize evacuee travel “cost”.  Overview of Integrated Distribution and Assignment Model  The underlying premise is that the selection of destinations and routes is intrinsically coupled in  an evacuation scenario.  That is, people in vehicles seek to travel out of an area of potential risk  as rapidly as possible by selecting the “best” routes.  The model is designed to identify these  “best” routes in a manner that realistically distributes vehicles from origins to destinations and  routes them over the highway network, in a consistent and optimal manner, reflecting evacuee  behavior.  For each origin, a set of “candidate destination nodes” is selected by the software logic and by  the analyst to reflect the desire by evacuees to travel away from the wildfire and to access  major highways.  The specific destination nodes within this set that are selected by travelers  and the selection of the connecting paths of travel, are both determined by DTRAD. This  determination is made by a logit‐based path choice model in DTRAD, so as to minimize the trip  “cost”, as discussed later.   The traffic loading on the network and the consequent operational traffic environment of the  network (density, speed, throughput on each link) vary over time as the evacuation takes place.   The DTRAD model, which is interfaced with the DYNEV simulation model, executes a succession  of “sessions” wherein it computes the optimal routing and selection of destination nodes for  the conditions that exist at that time.  Interfacing the DYNEV Simulation Model with DTRAD  The DYNEV II system reflects evacuation behavior wherein evacuees will seek to travel in a  general direction away from the location of the hazardous event.  An algorithm was developed  to support the DTRAD model in dynamically varying the Trip Table (O‐D matrix) over time from  one DTRAD session to the next.  Another algorithm executes a “mapping” from the specified  “geometric” network (link‐node analysis network) that represents the physical highway system,  to a “path” network that represents the vehicle [turn] movements.  DTRAD computations are  performed on the “path” network: DYNEV simulation model, on the “geometric” network.    City of Ashland B‐2 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  DTRAD Description  DTRAD is the DTA module for the DYNEV II System.   When the road network under study is large, multiple routing options are usually available  between trip origins and destinations. The problem of loading traffic demands and propagating  them over the network links is called Network Loading and is addressed by DYNEV II using  macroscopic traffic simulation modeling. Traffic assignment deals with computing the  distribution of the traffic over the road network for given O‐D demands and is a model of the  route choice of the drivers. Travel demand changes significantly over time, and the road  network may have time dependent characteristics, e.g., time‐varying signal timing or reduced  road capacity because of lane closure, or traffic congestion. To consider these time  dependencies, DTA procedures are required.   The DTRAD DTA module represents the dynamic route choice behavior of drivers, using the  specification of dynamic origin‐destination matrices as flow input. Drivers choose their routes  through the network based on the travel cost they experience (as determined by the simulation  model). This allows traffic to be distributed over the network according to the time‐dependent  conditions. The modeling principles of DTRAD include:   It is assumed that drivers not only select the best route (i.e., lowest cost path) but some  also select less attractive routes.  The algorithm implemented by DTRAD archives several  “efficient” routes for each O‐D pair from which the drivers choose.   The choice of one route out of a set of possible routes is an outcome of “discrete choice  modeling”. Given a set of routes and their generalized costs, the percentages of drivers  that choose each route is computed. The most prevalent model for discrete choice  modeling is the logit model. DTRAD uses a variant of Path‐Size‐Logit model (PSL).  PSL  overcomes the drawback of the traditional multinomial logit model by incorporating an  additional deterministic path size correction term to address path overlapping in the  random utility expression.   DTRAD executes the Traffic Assignment (TA) algorithm on an abstract network  representation called "the path network" which is built from the actual physical link‐ node analysis network. This execution continues until a stable situation is reached: the  volumes and travel times on the edges of the path network do not change significantly  from one iteration to the next. The criteria for this convergence are defined by the user.   Travel “cost” plays a crucial role in route choice. In DTRAD, path cost is a linear  summation of the generalized cost of each link that comprises the path. The generalized  cost for a link, a, is expressed as    𝑐௔ ൌ𝛼𝑡௔ ൅𝛽𝑙௔ ൅𝛾𝑠௔,  Where 𝑐௔ is the generalized cost for link a and 𝛼, 𝛽, and 𝛾 are cost coefficients for link  travel time, distance, and supplemental cost, respectively.  Distance and supplemental  costs are defined as invariant properties of the network model, while travel time is a  dynamic property dictated by prevailing traffic conditions. The DYNEV simulation model    City of Ashland B‐3 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  computes travel times on all edges in the network and DTRAD uses that information to  constantly update the costs of paths. The route choice decision model in the next  simulation iteration uses these updated values to adjust the route choice behavior. This  way, traffic demands are dynamically re‐assigned based on time dependent conditions.  The interaction between the DTRAD traffic assignment and DYNEV II simulation models  is depicted in Figure B‐1.  Each round of interaction is called a Traffic Assignment Session  (TA session). A TA session is composed of multiple iterations, marked as loop B in the  figure.   The supplemental cost is based on the “survival distribution” (a variation of the  exponential distribution). The Inverse Survival Function is a “cost” term in DTRAD to  represent the potential risk of travel toward the wildfire:    sa = ‐ β ln (p), 0 ≤ p ≤ l ; β ൐0    p = ௗ೙ ௗబ    dn = Distance of node, n, from the wildfire  d0 = Distance from the wildfire where there is zero risk  β  = Scaling factor    A do was chosen such that the EMZs are within the area at risk. Note that the supplemental  cost, sa, of link, a, is (high, low), if its downstream node, n, is (near, far from) the wildfire.  Network Equilibrium  In 1952, John Wardrop wrote:  Under equilibrium conditions traffic arranges itself in congested networks in such a way  that no individual trip‐maker can reduce his path costs by switching routes.  The above statement describes the “User Equilibrium” definition, also called the “Selfish Driver  Equilibrium”.  It is a hypothesis that represents a [hopeful] condition that evolves over time as  drivers search out alternative routes to identify those routes that minimize their respective  “costs”.  It has been found that this “equilibrium” objective to minimize costs is largely realized  by most drivers who routinely take the same trip over the same network at the same time (i.e.,  commuters).  Effectively, such drivers “learn” which routes are best for them over time.  Thus,  the traffic environment “settles down” to a near‐equilibrium state.  Clearly, since an emergency evacuation is a sudden, unique event, it does not constitute a long‐ term learning experience which can achieve an equilibrium state.  Consequently, DTRAD was  not designed as an equilibrium solution, but to represent drivers in a new and unfamiliar  situation, who respond in a flexible manner to real‐time information (either broadcast or  observed) in such a way as to minimize their respective costs of travel.         City of Ashland B‐4 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure B‐1.  Flow Diagram of Simulation‐DTRAD Interface   Start of next DTRAD Session  Set  T0 ൌ Clock time.  Archive System State at  T0  Define latest Link Turn  Percentages  Execute Simulation Model from  time,  T0 to T1  (burn time)  Provide DTRAD with link MOE at  time,  T1  Execute DTRAD iteration;  Get new Turn Percentages  Retrieve System State at  T0 ;  Apply new Link Turn Percents  DTRAD iteration converges?  Next iteration Simulate from  T0 to T2  (DTA session duration)  Set Clock to  T2  A  B  A  Yes No  B  APPENDIX C  DYNEV Traffic Simulation Model   City of Ashland C‐1 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  C. DYNEV TRAFFIC SIMULATION MODEL  This appendix describes the DYNEV traffic simulation model.  The DYNEV traffic simulation  model is a macroscopic model that describes the operations of traffic flow in terms of aggregate  variables:  vehicles, flow rate, mean speed, volume, density, queue length, on each link, for  each turn movement, during each Time Interval (simulation time step).  The model generates  trips from “sources” and from Entry Links and introduces them onto the analysis network at  rates specified by the analyst based on the mobilization time distributions. The model simulates  the movements of all vehicles on all network links over time until the network is empty.  At  intervals, the model outputs Measures of Effectiveness (MOE) such as those listed in Table C‐1.  Model Features Include:   Explicit consideration is taken of the variation in density over the time step; an iterative  procedure is employed to calculate an average density over the simulation time step for  the purpose of computing a mean speed for moving vehicles.   Multiple turn movements can be serviced on one link; a separate algorithm is used to  estimate the number of (fractional) lanes assigned to the vehicles performing each turn  movement, based, in part, on the turn percentages provided by the DTRAD model.   At any point in time, traffic flow on a link is subdivided into two classifications: queued  and moving vehicles.  The number of vehicles in each classification is computed. Vehicle  spillback, stratified by turn movement for each network link, is explicitly considered and  quantified.  The propagation of stopping waves from link to link is computed within each  time step of the simulation.  There is no “vertical stacking” of queues on a link.   Any link can accommodate “source flow” from zones via side streets and parking  facilities that are not explicitly represented.  This flow represents the evacuating trips  that are generated at the source.   The relation between the number of vehicles occupying the link and its storage capacity  is monitored every time step for every link and for every turn movement.  If the  available storage capacity on a link is exceeded by the demand for service, then the  simulator applies a “metering” rate to the entering traffic from both the upstream  feeders and source node to ensure that the available storage capacity is not exceeded.   A “path network” that represents the specified traffic movements from each network  link is constructed by the model; this path network is utilized by the DTRAD model.    A two‐way interface with DTRAD: (1) provides link travel times; (2) receives data that  translates into link turn percentages.   Provides MOE to animation software, EVAN   Calculates ETE statistics  All traffic simulation models are data‐intensive.  Table C‐2 outlines the necessary input data  elements.     City of Ashland C‐2 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  To provide an efficient framework for defining these specifications, the physical highway  environment is represented as a network.  The unidirectional links of the network represent  roadway sections: rural, multi‐lane, urban streets or freeways.  The nodes of the network  generally represent intersections or points along a section where a geometric property changes  (e.g. a lane drop, change in grade or free flow speed).  Figure C‐1 is an example of a small network representation.  The freeway is defined by the  sequence of links, (20,21), (21,22), and (22,23).  Links (8001, 19) and (3, 8011) are Entry and Exit  links, respectively.  An arterial extends from node 3 to node 19 and is partially subsumed within  a grid network.  Note that links (21,22) and (17,19) are grade‐separated.  C.1 Methodology  C.1.1 The Fundamental Diagram  It is necessary to define the fundamental diagram describing flow‐density and speed‐density  relationships. Rather than “settling for” a triangular representation, a more realistic  representation that includes a “capacity drop”, (I‐R)Qmax, at the critical density when flow  conditions enter the forced flow regime, is developed and calibrated for each link. This  representation, shown in Figure C‐2, asserts a constant free speed up to a density, k୤, and then  a linear reduction in speed in the range,  k୤ ൑ k ൑ kୡ ൌ 45 vpm,  the density at capacity. In the  flow‐density plane, a quadratic relationship is prescribed in the range,  kୡ ൏𝑘൑kୱ ൌ 95 vpm   which roughly represents the “stop‐and‐go” condition of severe congestion. The value of flow  rate, Qୱ ,  corresponding to  kୱ, is approximated at  0.7 RQ୫ୟ୶ . A linear relationship  between kୱ and k୨  completes the diagram shown in Figure C‐2. Table C‐3 is a glossary of terms.  The fundamental diagram is applied to moving traffic on every link. The specified calibration  values for each link are: (1) Free speed, v୤ ; (2) Capacity,  Q୫ୟ୶ ; (3) Critical density,  kୡ ൌ 45 vpm ; (4) Capacity Drop Factor, R = 0.9 ; (5) Jam density,  k୨ .  Then,  vୡ ൌ ୕ౣ౗౮ ୩ౙ ,k୤ൌ kୡ െ ሺ୚౜ି୚ౙሻ ୩ౙమ ୕ౣ౗౮ .  Setting  kത ൌ k െ kୡ ,  then Q ൌ RQ୫ୟ୶ െ ୖ୕ౣ౗౮ ଼ଷଷଷ kതଶ  for  0 ൑ kത ൑ kതୱ ൌ 50 .  It can be  shown that Q ൌ൫0.98 െ 0.0056 kത൯ RQ୫ୟ୶ for kതୱ ൑ kത ൑ kത୨,where kതୱ ൌ 50 and k఩ഥ ൌ 175.    C.1.2 The Simulation Model  The simulation model solves a sequence of “unit problems”. Each unit problem computes the  movement of traffic on a link, for each specified turn movement, over a specified time interval  (TI) which serves as the simulation time step for all links. Figure C‐3 is a representation of the  unit problem in the time‐distance plane. Table C‐3 is a glossary of terms that are referenced in  the following description of the unit problem procedure.  The formulation and the associated logic presented below are designed to solve the unit  problem for each sweep over the network (discussed below), for each turn movement serviced  on each link that comprises the evacuation network, and for each TI over the duration of the  evacuation.    City of Ashland C‐3 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Given ൌ Qୠ ,Mୠ ,L ,TI ,E଴ ,LN ,G Cൗ ,h ,L୴ ,R଴ ,Lୡ ,E ,M  Compute ൌ O ,Qୣ ,Mୣ  Define O ൌ O୕ ൅ O୑ ൅ O୉ ; E ൌ Eଵ ൅ Eଶ 1. For the first sweep, s = 1, of this TI, get initial estimates of mean density,  k଴ , the R – factor,  R଴  and entering traffic,  E଴ ,  using the values computed for the final sweep of the prior TI.  For each subsequent sweep,  s ൐ 1 ,calculate E ൌ ∑P୧୧ O୧ ൅ S where P୧ ,O୧  are the  relevant turn percentages from feeder link, i , and its total outflow (possibly metered) over  this TI; S is the total source flow (possibly metered) during the current TI.  Set iteration counter, n = 0,  k ൌ k଴ ,and Eൌ E଴ .     2. Calculate v ሺkሻ such that k ൑ 130  using the analytical representations of the  fundamental diagram.  Calculate Cap ൌ Q୫ୟ୶ሺTIሻ 3600 ൫G Cൗ൯ LN ,in vehicles,this value may be reduced   due to metering  Set R ൌ 1.0 if G Cൗ ൏ 1 or if k ൑ kୡ ; Set Rൌ 0.9 only if G Cൗ ൌ 1 and k ൐ kୡ  Calculate queue length, Lୠ ൌ Qୠ L୴ LN    3. Calculate tଵ ൌ TI െ ୐ ୚ . If tଵ ≺0 , set tଵ ൌ Eଵ ൌ O୉ ൌ 0 ; Else, Eଵ ൌ E ୲భ ୘୍ .       4. Then Eଶ ൌ E െ Eଵ ; tଶ ൌ TI െ tଵ    5. If Qୠ ൒ Cap ,then  O୕ ൌ Cap ,O୑ ൌ O୉ ൌ 0  If tଵ ൐ 0 ,then  Qୣᇱ ൌ Qୠ ൅ Mୠ ൅ Eଵ െ Cap  Else  Qୣᇱ ൌ Qୠ െ Cap  End if  Calculate Qୣ and Mୣ using Algorithm A ሺbelowሻ    6. Else ሺQୠ ≺Capሻ  O୕ ൌ Qୠ ,RCapൌCap െ O୕    7.       If Mୠ ൑ RCap ,then   8. If tଵ ൐ 0 , O୑ ൌ Mୠ ,O୉ ൌ min ൬RCap െ Mୠ,tଵ Cap TI ൰ ൒ 0  Qୣᇱ ൌ Eଵ െ O୉   If Qୣᇱ ൐ 0 ,then    City of Ashland C‐4 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Calculate Qୣ ,Mୣ with Algorithm A   Else   Qୣ ൌ 0 , Mୣ ൌ Eଶ   End if   Else ሺtଵ ൌ 0ሻ    O୑ ൌቀ୴ሺ୘୍ሻି୐ౘ ୐ି୐ౘ ቁ Mୠ and O୉ ൌ 0    Mୣ ൌ Mୠ െ O୑ ൅ E ; Qୣ ൌ 0   End if  9.    Else ሺMୠ ൐𝑅𝐶𝑎𝑝ሻ                O୉ ൌ 0    If tଵ ൐ 0 , then   O୑ ൌ RCap , Qୣᇱ ൌ Mୠ െ O୑ ൅ Eଵ       Calculate Qୣ and Mୣ using Algorithm A  10.       Else ሺtଵ ൌ 0ሻ      Mୢ ൌቂቀ୴ሺ୘୍ሻି୐ౘ ୐ି୐ౘ ቁ Mୠ ቃ      If Mୢ ൐𝑅𝐶𝑎𝑝 ,𝑡ℎ𝑒𝑛  O୑ ൌ RCap    Qୣᇱ ൌ Mୢ െ O୑      Apply Algorithm A to calculate Qୣ and Mୣ    Else  O୑ ൌ Mୢ      Mୣ ൌ Mୠ െ O୑ ൅ E and Qୣ ൌ 0    End if    End if  End if  End if  11. Calculate a new estimate of average density, k ത୬ ൌ ଵ ସ ሾkୠ ൅ 2 k୫ ൅ kୣሿ ,  where  kୠ = density at the beginning of the TI  kୣ = density at the end of the TI  k୫ = density at the mid‐point of the TI  All values of density apply only to the moving vehicles.    If หkത୬ െ kത୬ିଵห൐ ∈and n ൏ N  where N ൌ max number of iterations, and ϵ is a convergence criterion,then    12. set n ൌ n ൅ 1 , and return to step 2 to perform iteration,n,using k ൌ kത୬ .  End if    Computation of unit problem is now complete. Check for excessive inflow causing  spillback.    City of Ashland C‐5 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  T  t3  Q’ t1  L3  v  Qe  v  vQ Qb  Mb  13. If Qୣ ൅ Mୣ ൐ ሺ୐ି୛ሻ ୐୒ ୐౬ , then  The number of excess vehicles that cause spillback is:  SB ൌ Qୣ ൅ Mୣ െ ሺ୐ି୛ሻ ∙ ୐୒ ୐౬ ,   where W is the width of the upstream intersection. To prevent spillback, meter the  outflow from the feeder approaches and from the source flow, S, during this TI by the  amount, SB.  That is, set  M ൌ 1 െ SB ሺE ൅ Sሻ ൒ 0 ,where M is the metering factor ሺover all movementsሻ.  This metering factor is assigned appropriately to all feeder links and to the source flow, to be  applied during the next network sweep, discussed later.   Algorithm A  This analysis addresses the flow environment over a TI during which moving vehicles can  join a standing or discharging queue. For the case  shown,  Qୠ ൑ Cap,with tଵ ൐ 0 and a queue of  length,  Qୣᇱ , formed by that portion of  Mୠ and E  that  reaches the stop‐bar within the TI, but could not  discharge due to inadequate capacity. That is,  Qୠ ൅ Mୠ ൅ Eଵ ൐𝐶𝑎𝑝.  This queue length,  Qୣᇱ ൌ Qୠ ൅ Mୠ ൅ Eଵ െ Cap  can be extended to  Qୣ  by traffic  entering the approach during the current TI, traveling  at speed, v, and reaching the rear of the queue within  the TI. A portion of the entering vehicles,  Eଷ ൌ E ୲య ୘୍ ,   will likely join the queue. This analysis calculates  tଷ ,Qୣ and Mୣ  for the input values of L, TI, v, E, t, L୴, LN, Qୣᇱ .    When tଵ ൐ 0 and Qୠ ൑ Cap:  Define: Lୣᇱ ൌ Qୣᇱ L୴ LN . From the sketch, Lଷ ൌ vሺTI െ tଵ െ tଷሻ ൌ L െ ሺQୣᇱ ൅ Eଷሻ L୴ LN .  Substituting Eଷ ൌ ୲య ୘୍ E yields: െ vtଷ ൅ ୲య ୘୍ E ୐౬ ୐୒ ൌ L െ vሺTI െ tଵሻ െ Lୣᇱ . Recognizing that  the first two terms on the right hand side cancel, solve for  tଷ to obtain:    tଷ ൌ Lୣᇱ ቂv െ ETI L୴LNቃ such that 0 ൑ tଷ ൑ TI െ tଵ    If the denominator, ቂv െ ୉ ୘୍ ୐౬ ୐୒ቃ൑0,set tଷ ൌ TI െ tଵ .  Then,Qୣ ൌ Qୣᇱ ൅ E tଷ TI , Mୣ ൌ E ൬1 െ tଵ ൅ tଷ TI ൰  The complete Algorithm A considers all flow scenarios; space limitation precludes its  inclusion, here.    City of Ashland C‐6 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  C.1.3 Lane Assignment  The “unit problem” is solved for each turn movement on each link. Therefore it is necessary to  calculate a value,  LN୶ ,  of allocated lanes for each movement, x. If in fact all lanes are specified  by, say, arrows painted on the pavement, either as full lanes or as lanes within a turn bay, then  the problem is fully defined. If however there remain un‐channelized lanes on a link, then an  analysis is undertaken to subdivide the number of these physical lanes into turn movement  specific virtual lanes, LNx.   C.2 Implementation  C.2.1 Computational Procedure  The computational procedure for this model is shown in the form of a flow diagram as Figure  C‐4. As discussed earlier, the simulation model processes traffic flow for each link  independently over TI that the analyst specifies; it is usually 60 seconds or longer. The first step  is to execute an algorithm to define the sequence in which the network links are processed so  that as many links as possible are processed after their feeder links are processed, within the  same network sweep. Since a general network will have many closed loops, it is not possible to  guarantee that every link processed will have all of its feeder links processed earlier.   The processing then continues as a succession of time steps of duration, TI, until the simulation  is completed. Within each time step, the processing performs a series of “sweeps” over all  network links; this is necessary to ensure that the traffic flow is synchronous over the entire  network. Specifically, the sweep ensures continuity of flow among all the network links; in the  context of this model, this means that the values of E, M, and S are all defined for each link such  that they represent the synchronous movement of traffic from each link to all of its outbound  links. These sweeps also serve to compute the metering rates that control spillback.   Within each sweep, processing solves the “unit problem” for each turn movement on each link.  With the turn movement percentages for each link provided by the DTRAD model, an algorithm  allocates the number of lanes to each movement serviced on each link. The timing at a signal, if  any, applied at the downstream end of the link, is expressed as a G/C ratio, the signal timing  needed to define this ratio is an input requirement for the model. The model also has the  capability of representing, with macroscopic fidelity, the actions of actuated signals responding  to the time‐varying competing demands on the approaches to the intersection.  The solution of the unit problem yields the values of the number of vehicles, O, that discharge  from the link over the time interval and the number of vehicles that remain on the link at the  end of the time interval as stratified by queued and moving vehicles:  Qୣ and Mୣ .  The  procedure considers each movement separately (multi‐piping). After all network links are  processed for a given network sweep, the updated consistent values of entering flows, E;  metering rates, M; and source flows, S are defined so as to satisfy the “no spillback” condition.  The procedure then performs the unit problem solutions for all network links during the  following sweep.     City of Ashland C‐7 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Experience has shown that the system converges (i.e. the values of E, M and S “settle down” for  all network links) in just two sweeps if the network is entirely under‐saturated or in four sweeps  in the presence of extensive congestion with link spillback. (The initial sweep over each link  uses the final values of E and M, of the prior TI).  At the completion of the final sweep for a TI,  the procedure computes and stores all measures of effectiveness for each link and turn  movement for output purposes. It then prepares for the following time interval by defining the  values of  Qୠ and Mୠ  for the start of the next TI as being those values of  Qୣ and Mୣ  at the end  of the prior TI. In this manner, the simulation model processes the traffic flow over time until  the end of the run. Note that there is no space‐discretization other than the specification of  network links.  C.2.2 Interfacing with Dynamic Traffic Assignment (DTRAD)  The DYNEV II system reflects evacuation behavior wherein evacuees will seek to travel in a  general direction away from the location of the hazardous event. Thus, an algorithm was  developed to identify an appropriate set of destination nodes for each origin based on its  location and on the expected direction of travel. This algorithm also supports the DTRAD model  in dynamically varying the Trip Table (O‐D matrix) over time from one DTRAD session to the  next.   Figure B‐1 depicts the interaction of the simulation model with the DTRAD model in the DYNEV  II system. As indicated, DYNEV II performs a succession of DTRAD “sessions”; each such session  computes the turn link percentages for each link that remain constant for the session duration,  ሾT଴ ,Tଶሿ ,  specified by the analyst. The end product is the assignment of traffic volumes from  each origin to paths connecting it with its destinations in such a way as to minimize the  network‐wide cost function. The output of the DTRAD model is a set of updated link turn  percentages which represent this assignment of traffic.  As indicated in Figure B‐1, the simulation model supports the DTRAD session by providing it  with operational link MOE that are needed by the path choice model and included in the  DTRAD cost function. These MOE represent the operational state of the network at a time,  Tଵ ൑ Tଶ ,  which lies within the session duration, ሾT଴ ,Tଶሿ . This “burn time”,  Tଵ െ T଴ ,  is  selected by the analyst. For each DTRAD iteration, the simulation model computes the change  in network operations over this burn time using the latest set of link turn percentages  computed by the DTRAD model. Upon convergence of the DTRAD iterative procedure, the  simulation model accepts the latest turn percentages provided by the Dynamic Traffic  Assignment (DTA) model, returns to the origin time,  T଴ , and executes until it arrives at the end  of the DTRAD session duration at time,  Tଶ . At this time the next DTA session is launched and  the whole process repeats until the end of the DYNEV II run.  Additional details are presented in Appendix B.       City of Ashland C‐8 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Table C‐1.  Selected Measures of Effectiveness Output by DYNEV II  Measure Units Applies To  Vehicles Discharged Vehicles Link, Network, Exit Link  Speed Miles/Hours (mph) Link, Network   Density Vehicles/Mile/Lane Link  Level of Service LOS Link  Content Vehicles Network  Travel Time Vehicle‐hours Network  Evacuated Vehicles Vehicles Network, Exit Link  Trip Travel Time Vehicle‐minutes/trip Network  Capacity Utilization Percent Exit Link  Attraction Percent of total evacuating vehicles Exit Link  Max Queue Vehicles Node, Approach  Time of Max Queue Hours:minutes Node, Approach  Route Statistics Length (mi); Mean Speed (mph); Travel  Time (min) Route  Mean Travel Time Minutes Evacuation Trips; Network       City of Ashland C‐9 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Table C‐2.  Input Requirements for the DYNEV II Model  HIGHWAY NETWORK   Links defined by upstream and downstream node numbers   Link lengths   Number of lanes (up to 9) and channelization   Turn bays (1 to 3 lanes)   Destination (exit) nodes   Network topology defined in terms of downstream nodes for each receiving link   Node Coordinates (X,Y)   Wildfire Coordinates (X,Y)  GENERATED TRAFFIC VOLUMES   On all entry links and source nodes (origins), by Time Period   TRAFFIC CONTROL SPECIFICATIONS   Traffic signals:  link‐specific, turn movement specific   Signal control treated as fixed time or actuated    Location of traffic control points (these are represented as actuated signals)   Stop and Yield signs   Right‐turn‐on‐red (RTOR)   Route diversion specifications   Turn restrictions   Lane control (e.g. lane closure, movement‐specific)  DRIVER’S AND OPERATIONAL CHARACTERISTICS   Driver’s (vehicle‐specific) response mechanisms: free‐flow speed, discharge headway   Bus route designation.  DYNAMIC TRAFFIC ASSIGNMENT   Candidate destination nodes for each origin (optional)   Duration of DTA sessions   Duration of simulation “burn time”   Desired number of destination nodes per origin  INCIDENTS   Identify and Schedule of closed lanes   Identify and Schedule of closed links         City of Ashland C‐10 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Table C‐3.  Glossary  Cap The maximum number of vehicles, of a particular movement, that can discharge  from a link within a time interval.  E The number of vehicles, of a particular movement, that enter the link over the  time interval. The portion, ETI, can reach the stop‐bar within the TI.  G/C The green time: cycle time ratio that services the vehicles of a particular turn  movement on a link.  h The mean queue discharge headway, seconds.  k Density in vehicles per lane per mile.  kത The average density of moving vehicles of a particular movement over a TI, on a  link.  L The length of the link in feet.  Lୠ ,Lୣ The queue length in feet of a particular movement, at the [beginning, end] of a  time interval.  LN The number of lanes, expressed as a floating point number, allocated to service a  particular movement on a link.  L୴ The mean effective length of a queued vehicle including the vehicle spacing, feet.  M Metering factor (Multiplier): 1.  Mୠ ,Mୣ  The number of moving vehicles on the link, of a particular movement, that are  moving at the [beginning, end] of the time interval. These vehicles are assumed  to be of equal spacing, over the length of link upstream of the queue.  O The total number of vehicles of a particular movement that are discharged from a  link over a time interval.  O୕ ,O୑ ,O୉  The components of the vehicles of a particular movement that are discharged  from a link within a time interval: vehicles that were Queued at the beginning of  the TI; vehicles that were Moving within the link at the beginning of the TI;  vehicles that Entered the link during the TI.  P୶ The percentage, expressed as a fraction, of the total flow on the link that  executes a particular turn movement, x.       City of Ashland C‐11 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Qୠ ,Qୣ The number of queued vehicles on the link, of a particular turn movement, at the  [beginning, end] of the time interval.  Q୫ୟ୶  The maximum flow rate that can be serviced by a link for a particular movement  in the absence of a control device. It is specified by the analyst as an estimate of  link capacity, based upon a field survey, with reference to the HCM.  R The factor that is applied to the capacity of a link to represent the “capacity  drop” when the flow condition moves into the forced flow regime. The lower  capacity at that point is equal to RQ୫ୟ୶ .  RCap The remaining capacity available to service vehicles of a particular movement  after that queue has been completely serviced, within a time interval, expressed  as vehicles.  S୶ Service rate for movement x, vehicles per hour (vph).  tଵ Vehicles of a particular turn movement that enter a link over the first tଵ seconds  of a time interval, can reach the stop‐bar (in the absence of a queue down‐ stream) within the same time interval.  TI The time interval, in seconds, which is used as the simulation time step.  v The mean speed of travel, in feet per second (fps) or miles per hour (mph), of  moving vehicles on the link.  v୕ The mean speed of the last vehicle in a queue that discharges from the link within  the TI. This speed differs from the mean speed of moving vehicles, v.  W The width of the intersection in feet. This is the difference between the link  length which extends from stop‐bar to stop‐bar and the block length.         City of Ashland C‐12 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure C‐1.  Representative Analysis Network    8001 8011 3 6 9 12 14 15 16 19 17 2 8107 8 8012 13 22 8009 8010 8005 23 8003 8104 5 10 11 8014 25 24 21 8008 8007 8006 8004 8024 20 8002 Entry, Exit Nodes are  numbered 8xxx    City of Ashland C‐13 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure C‐2.  Fundamental Diagrams      Figure C‐3.  A UNIT Problem Configuration with t1 > 0   Capacity Drop Qs f s Volume, vph Qmax Speed, mph R vc k k j c k Flow Regimes Density, vpm Density, vpm R Qmax k vf Free Forced   L E2 Me Qe Mb Qb OE OM OQ E1 TI Time  Distance  t1 t2   v v vQ Down  Up    City of Ashland C‐14 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure C‐4.  Flow of Simulation Processing (See Glossary:  Table C‐3)    Sequence Network Links  Next Time‐step, of duration, TI  Next sweep; Define E, M, S for all  Links  Next Link  Next Turn Movement, x  Get lanes, LNx  Service Rate, Sx;  ሺG/Cxሻ  Get inputs to Unit Problem:  Qb ,Mb , E  Solve Unit Problem: Qe ,Me ,O  Last Movement ?  Last Link ?  Last Sweep ?  Calc., store all Link MOE  Set up next TI :  Last Time – step ?  DONE  A  B  C  D  D  C  B  A  No  No  No  No  Yes  Yes  Yes  Yes  APPENDIX D  Detailed Description of Study Procedure   City of Ashland D‐1 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  D. DETAILED DESCRIPTION OF STUDY PROCEDURE  This appendix describes the activities that were performed to compute the Evacuation Time  Estimates.  The individual steps of this effort are represented as a flow diagram in Figure D‐1.  Each numbered step in the description that follows corresponds to the numbered element in  the flow diagram.  Step 1  The first activity was to obtain EMZ information and create a GIS base map. The base map  extends beyond the EMZ into the Shadow Region.   The EMZ and Shadow Region generally run  northwest to southeast.  The study area is situated on OR‐99 and is bounded mostly by I‐5 to  the northeast and Siskiyou Mountain Park to the southwest. The base map incorporates the  local roadway topology, a suitable topographic background and the EMZ boundaries.  Step 2  2010 Census block information was obtained in GIS format. This information was used to  estimate the resident population within the EMZ and the Shadow Region and to define the  spatial distribution and demographic characteristics of the population within the study area.  Employee data were estimated using the U.S. Census Longitudinal Employer‐Household  Dynamics from the OnTheMap Census analysis tool1.  Tourist information, schools, medical and  other types of special facilities data were provided by the City of Ashland supplemented with  internet searches.  Step 3   A kickoff meeting was conducted with major stakeholders (city emergency managers, Southern  Oregon University, and transportation and county transit managers).  The purpose of the  kickoff meeting was to present an overview of the work effort, identify key agency personnel,  and indicate the data requirements for the study. Specific requests for information were  presented to the city. Unique features of the study area were discussed to identify the local  concerns that should be addressed by the ETE study.  Step 4  Next, a physical survey of the roadway system in the study area was conducted to determine  the geometric properties of the highway sections, the channelization of lanes on each section  of roadway, whether there are any turn restrictions or special treatment of traffic at  intersections, the type and functioning of traffic control devices, gathering signal timings for  pre‐timed traffic signals, and to make the necessary observations needed to estimate realistic  values of roadway capacity.     1https://onthemap.ces.census.gov/   City of Ashland D‐2 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Step 5  A demographic survey of households within the EMZ was conducted to identify household  dynamics, trip generation characteristics, and evacuation‐related demographic information of  the EMZ population. This information was used to determine important study factors including  the average number of evacuating vehicles used by each household, and the time required to  perform pre‐evacuation mobilization activities.   Step 6  A computerized representation of the physical roadway system, called a link‐node analysis  network, was developed using the UNITES software developed by KLD. Once the geometry of  the network was completed, the network was calibrated using the information gathered during  the road survey (Step 4). Estimates of highway capacity for each link and other link‐specific  characteristics were introduced to the network description. Traffic signal timings were input  accordingly. The link‐node analysis network was imported into a GIS map. Census data was  overlaid in the map, and origin centroids where trips would be generated during the evacuation  process were assigned to appropriate links.   Step 7  Regions (groupings of EMZ) that may be advised to evacuate, were developed.   The need for evacuation can occur over a range of time‐of‐day, day‐of‐week, and season.  Scenarios were developed to capture the variation in evacuation demand, highway capacity and  mobilization time, for different time of day, day of the week, and time of year.  Step 8  Access impaired neighborhoods were identified and classified based on specific criteria. First,  neighborhoods with low population densities were eliminated.  Then, neighborhoods with low  wildfire risks were removed.  Next, Neighborhoods with limited means of egress were selected.   Last, neighborhood boundaries were refined to eliminate large uninhabited areas.  Once access  impaired neighborhoods were identified, recommendations were made for safe refuge areas as  well as evacuation signage for these neighborhoods.   Step 9  The input stream for the DYNEV II model, which integrates the dynamic traffic assignment and  distribution model, DTRAD, with the evacuation simulation model, was created for a prototype  evacuation case – the evacuation of the entire EMZ for a representative scenario.  Step 10  After creating this input stream, the DYNEV II System was executed on the prototype  evacuation case to compute evacuating traffic routing patterns. DYNEV II contains an extensive  suite of data diagnostics which check the completeness and consistency of the input data  specified. The analyst reviews all warning and error messages produced by the model and then  corrects the database to create an input stream that properly executes to completion.  The model assigns destinations to all origin centroids consistent with a (general) radial    City of Ashland D‐3 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  evacuation of the EMZ and Shadow Region, away from the hazard. The analyst may optionally  supplement and/or replace these model‐assigned destinations, based on professional  judgment, after studying the topology of the analysis highway network.  The model produces  link and network‐wide measures of effectiveness as well as estimates of evacuation time.  Step 11  The results generated by the prototype evacuation case are critically examined. The  examination includes observing the animated graphics (using the EVAN software which  operates on data produced by DYNEV II) and reviewing the statistics output by the model.  This  is a labor‐intensive activity, requiring the direct participation of skilled engineers who possess  the necessary practical experience to interpret the results and to determine the causes of any  problems reflected in the results.  Essentially, the approach is to identify those bottlenecks in the network that represent  locations where congested conditions are pronounced and to identify the cause of this  congestion.  This cause can take many forms, either as excess demand due to high rates of trip  generation, improper routing, a shortfall of capacity, or as a quantitative flaw in the way the  physical system was represented in the input stream. This examination leads to one of two  conclusions:   The results are satisfactory; or   The input stream must be modified accordingly.  This decision requires, of course, the application of the user's judgment and experience based  upon the results obtained in previous applications of the model and a comparison of the results  of the latest prototype evacuation case iteration with the previous ones.  If the results are  satisfactory in the opinion of the user, then the process continues with Step 14.  Otherwise,  proceed to Step 12.  Step 12  There are many "treatments" available to the user in resolving apparent problems.  These  treatments range from decisions to reroute the traffic by assigning additional evacuation  destinations for one or more sources, imposing turn restrictions where they can produce  significant improvements in capacity, changing the control treatment at critical intersections so  as to provide improved service for one or more movements, or in prescribing specific  treatments for channelizing the flow so as to expedite the movement of traffic along major  roadway systems.  Such "treatments" take the form of modifications to the original prototype  evacuation case input stream.  All treatments are designed to improve the representation of  evacuation behavior.     City of Ashland D‐4 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Step 13  As noted above, the changes to the input stream must be implemented to reflect the  modifications undertaken in Step 12.  At the completion of this activity, the process returns to  Step 10 where the DYNEV II System is again executed.  Step 14  Evacuation of transit‐dependent evacuees and special facilities are included in the evacuation  analysis. Fixed routing for transit buses and for school buses, ambulances, and other transit  vehicles are introduced into the final prototype evacuation case data set. DYNEV II generates  route‐specific speeds over time for use in the estimation of evacuation times for the transit  dependent and special facility population groups.    Step 15  The prototype evacuation case was used as the basis for generating all region and scenario‐ specific evacuation cases to be simulated. This process was automated through the UNITES user  interface. For each specific case, the population to be evacuated, the trip generation  distributions, the highway capacity and speeds, and other factors are adjusted to produce a  customized case‐specific data set.  Step 16  All evacuation cases are executed using the DYNEV II System to compute ETE. Once results were  available, quality control procedures were used to assure the results were consistent, dynamic  routing was reasonable, and traffic congestion/bottlenecks were addressed properly.  Step 17  Once vehicular evacuation results are accepted, average travel speeds for transit and special  facility routes were used to compute evacuation time estimates for transit‐dependent  permanent residents, schools, hospitals, and other special facilities.  Step 18  Several ETE sensitivity studies were conducted to consider the impact on ETE based on “what  if” scenarios. These scenarios include direction of wildfire approach and changes to  mobilization time, number of evacuating vehicles per household, number of vehicles evacuating  from the shadow region, and potential implementation of traffic management plans by the City  of Ashland. These scenarios were then compared to the baseline ETE to test if certain tactics  could be used to reduce evacuation time.   Step 19  The simulation results are analyzed, tabulated and graphed.  The results were then  documented.        City of Ashland D‐5 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0      Figure D‐1.  Flow Diagram of Activities  Create GIS Base Map  Gather Census Block and Demographic Data for  Study Area.  Project population to 2020.  Field Survey of Roadways within Study Area  Conduct Kickoff Meeting with Stakeholders  Create and Calibrate Link‐Node Analysis Network  Develop Evacuation Regions and Scenarios  Conduct Demographic Survey and Develop Trip  Generation Characteristics  Execute DYNEV II for Prototype Evacuation Case B  A  Step 1  Step 2  Step 3  Step 4  Step 5  Step 6  Step 7  Examine Prototype Evacuation Case using EVAN and   DYNEV II Output  Modify Evacuation Destinations and/or Develop  Traffic Control Treatments  A  B  Modify Database to Reflect Changes to Prototype  Evacuation Case  Establish Transit and Special Facility Evacuation  Routes and Update DYNEV‐II Database   Generate DYNEV‐II Input Streams for All Evacuation  Cases  Use DYNEV‐II Average Speed Output to Compute  ETE for Transit and Special Facility Routes  Use DYNEV‐II Results to Estimate Transit and Special  Facilities Evacuation Time Estimates  Conduct “what if” Scenarios  Results Satisfactory  Step 11  Step 12  Step 13  Step 14  Step 15  Step 16  Step 17  Step 18  Identify and Classify Access Impaired  Neighborhoods  Create and Debug DYNEV‐II Input Stream  Step 8  Step 9  Step 10  Documentation  Step 19  APPENDIX E  Facility Data   City of Ashland E‐1 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0  E. FACILITY DATA  This appendix lists population information, as of January 2021, for special facilities that are  located within the EMZ that were used in this study. Special facilities are defined as schools,  preschools/daycares, and medical facilities.  Tourist population is included in the tables for golf  courses, hiking trails, theatres, and lodging facilities.  OnTheMap employment data (see Section  3, sub‐section 3.4) is summarized in the table for major employers.  Maps of each school,  preschool/daycare, medical facility, major employer, golf course, hiking trail, theatre, and  lodging facility are also provided.    City of Ashland E‐2 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0  Table E‐1.  Schools and Preschools/Daycares within the EMZ  EMZ Facility Name Facility Type Street Address Municipality Enrollment  2 Children’s World Preschool/Daycare 175 N Main St Ashland 10  2 Oregon Child Development Preschool/Daycare 265 N Main St Ashland 213  3 Pea Pod Village Preschool/Daycare 518 Auburn St Ashland 10  3 Reflective Hearts Childcare Preschool/Daycare 414 Courtney St Ashland 10  3 Southern Oregon University School 1250 Siskiyou Blvd Ashland 5,000  4 Memory Lane Preschool Preschool/Daycare 1615 Clark Ave Ashland 20  4 Rain and Shine Preschool Preschool/Daycare Harmony Ln Ashland 20  6 Ashland Middle School School 100 Walker Ave Ashland 900  6 Bellview Elementary School School 1070 Tolman Creek Rd Ashland 460  6 John Muir Elementary School School 100 Walker Ave Ashland 270  6 Stone Soup Playschool Preschool/Daycare 782 Park St Ashland 10  6 Walker Elementary School School 364 Walker Ave Ashland 340  7 Ashland High School School 201 S Mountain Ave Ashland 1,000  7 Head Start Preschool/Daycare 421 Walker Ave Ashland 20  10 Helman Elementary School School 705 Helman St Ashland 360  EMZ TOTAL:  8,643           City of Ashland E‐3 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0  Table E‐2.  Medical Facilities within the EMZ  EMZ Facility Name  Street  Address Municipality  Cap‐  acity  Current  Census  Ambul‐  atory  Patients  Wheel‐  chair  Patients  Bed‐  ridden  Patients  2 Asante Ashland Community Hospital 280 Maple St Ashland 125 125 63 31 31  2 Linda Vista Nursing & Rehab Center 135 Maple St Ashland 100 100 50 25 25  10 Ashland Surgery Center 658 N Main St Ashland 25 25 13 6 6  EMZ TOTAL:  250 250 126 62 62    Table E‐3.  Major Employers within the EMZ  EMZ Facility Name Street Address Municipality  Employees  (Max Shift)  Employees  Commuting into  the EMZ  Employee  Vehicles Commuting  into the EMZ  1  Various locations throughout the EMZ1  111 74 70  2 151 100 94  3 938 627 593  4 0 0 0  5 271 181 171  6 711 475 448  7 129 86 81  8 898 599 565  9 81 54 51  10 159 106 100  EMZ TOTAL: 3,449 2,302 2,173           1 The major employer locations identified by the Census Bureau are shown in Figure E-3. The locations are represented by circles which increase in size proportional to the number of non-EMZ employees present in each Census Block.   City of Ashland E‐4 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0  Table E‐4.  Recreational Facilities and Lodging Facilities within the EMZ  EMZ Facility Name Facility Type Street Address Municipality Tourists Vehicles  1 Lithia Park Hiking Trail Winburn Way Ashland 1,000 280  2 Acid Castle Boulders Access Point Hiking Trail 183 Hitt Rd Ashland 75 38  3 Ashland Springs Hotel Lodging 212 E Main St Ashland 140 63  3 Columbia Hotel Lodging 262 E Main St Ashland 48 22  3 Oregon Shakespeare Festival Theatre 15 S Pioneer St Ashland 1,975 8862  3 Winchester Inn Lodging 35 S 2nd St Ashland 42 19  4 Oredson Todd Woods Hiking Trail Lupine Dr Ashland 180 90  5 Ashland Hills Hotel & Suites and Convention Center Lodging 2525 Ashland St Ashland 366 164  5 Best Western Windsor Inn Lodging 2520 Ashland St Ashland 186 83  5 Holiday Inn Express & Suites Ashland Lodging 565 Clover Ln Ashland 130 58  5 Oak Knoll Golf Course Golf Course 3070 OR‐66 Ashland 50 50  6 Cedarwood Inn Hotel Lodging 1801 Siskiyou Blvd Ashland 100 45  6 Rodeway Inn Lodging 2359 Ashland St Ashland 96 43  6 Super 8 by Wyndham Ashland Lodging 2350 Ashland St Ashland 132 59  7 Ashland Motel ‐ University Lodging 1145 Siskiyou Blvd Ashland 52 23  7 Flagship Inn‐Ashland Lodging 1193 Siskiyou Blvd Ashland 122 55  7 Palm Hotel Lodging 1065 Siskiyou Blvd Ashland 32 14  7 Timbers Motel Lodging 1450 Ashland St Ashland 60 27  9 North Mountain Park Hiking Trail 620 N Mountain Ave Ashland 180 150  10 Plaza Inn & Suites Lodging 98 Central Ave Ashland 184 83  EMZ TOTAL:  5,150 2,252             2 There is limited parking capacity at Oregon Shakespeare Festival in EMZ 3. According to the city, the vehicles for the festival park at multiple places near the theatre in EMZs 2, 3 and 8. For detailed information, please refer to Section 3.   City of Ashland E‐5 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0    Figure E‐1.  Schools and Preschools/Daycares within the EMZ    City of Ashland E‐6 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0    Figure E‐2.  Medical Facilities within the EMZ    City of Ashland E‐7 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0    Figure E‐3.  Major Employers within the EMZ     City of Ashland E‐8 KLD Engineering, P.C.  Evacuation Time Estimate Study  Rev. 0    Figure E‐4.  Recreational Facilities and Lodging Facilities within the EMZ  APPENDIX F  Demographic Survey   City of Ashland  F‐1 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  F. DEMOGRAPHIC SURVEY  This appendix presents the results obtained from a Demographic Survey that was conducted in  support of this study. Outlined below is the survey sampling plan, results obtained, and survey  instrument (See Attachment A).   F.1 Introduction  The development of evacuation time estimates for the City of Ashland Emergency Management  Zones (EMZs) requires the identification of travel patterns, car ownership and household size of  the population.  Demographic information can be obtained from Census data, however, the use  of this data has several limitations when applied to emergency planning. First, the Census data  do not encompass the range of information needed to identify the time required for preliminary  activities (mobilization) that must be undertaken prior to evacuating the area. Secondly, Census  data do not contain attitudinal responses needed from the population of the EMZs and  consequently may not accurately represent the anticipated behavioral characteristics of the  evacuating populace.  These concerns are addressed by conducting a demographic survey of a representative sample  of the study area population. The survey is designed to elicit information from the public  concerning family demographics and estimates of response times to well defined events. The  design of the survey includes a limited number of questions of the form “What would you do if  …?” and other questions regarding activities with which the respondent is familiar (“How long  does it take you to …?”).  F.2 Survey Instrument and Sampling Plan  Attachment A presents the final survey instrument used for the demographic survey. A draft of  the instrument was submitted to stakeholders for comment. Comments were received and the  survey instrument was modified accordingly, prior to conducting the survey.  Following the completion of the instrument, a sampling plan was developed. A sample size of  2,471 completed survey forms yields results with a sampling error of approximately ±2.30 at the  99% confidence level. The sample must be drawn from the study population (see Section 3.1)  converted to households using the average household size of 2.06 people per household based  upon 2014‐2018 Census data since the goal is to survey individual households rather than  individual people. A list of zip codes in the study area was developed using geographic  information system (GIS) software.   The demographic survey was conducted through an online form.  The demographic survey  primarily advertised utilizing a mass notification system, Nixle.  Additionally, the survey was  posted electronically on the city’s websites and Facebook pages.    City of Ashland  F‐2 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  F.3 Survey Results  The results of the survey fall into three categories. The first category is household demographic  results. Household demographic information includes such factors as household size, automobile  ownership, automobile availability, commuters, cellphone coverage, and emergency alert and  warning system subscription. The second category of survey results is about evacuation  responses. This section contains results regarding how residents in the study area would respond  to an evacuation. The third category of results contains time distributions for performing certain  pre‐evacuation activities. These data are processed to develop the trip generation distributions  used in the evacuation modeling effort, as discussed in Section 5.  A review of the survey instrument reveals that several questions have a “Don’t Know” (DK) or  “Decline to State” option for a response. It is accepted practice in conducting surveys of this type  to accept the answers of a respondent who offers a DK or “Decline to State” response for a few  questions. To address the issue of occasional DK/declined responses from a large sample, the  practice is to assume that the distribution of these responses is the same as the underlying  distribution of the positive responses. In effect, the DK/declined responses are ignored, and the  distributions are based upon the positive data that is acquired.  F.3.1 Household Demographic Results  Household Size  Figure F‐1 presents the distribution of household size within the EMZs based on the responses to  the demographic survey. The average household contains 2.23 people. The estimated household  size (2.06 persons) used to determine the survey sample was drawn from Census data. The close  agreement (well within the sampling error bounds) between the average household size  obtained from the survey and from the Census is an indication of the reliability of the survey.  Automobile Ownership  The average number of automobiles available per household in the study area is 1.88. The  distribution of automobile ownership is presented in Figure F‐2. It should be noted that only  1.14% of people do not have access to a vehicle. Figure F‐3 and Figure F‐4 present the automobile  availability by household size. As expected, nearly all households of 2 or more people have access  to at least one vehicle. Figure F‐5 shows the percent of households that own an electric vehicle.  Approximately 13 percent of households own at least one electric vehicle.  Ridesharing  An overwhelming proportion (88%) of the households surveyed responded that they could share  a ride with a neighbor, relative, or friend if a car is not available to them when advised to  evacuate.  Functional or Transportation Needs  Approximately 7% of households have a person with functional or transportation needs.  Figure  F‐6 shows the breakdown of the percentage of households with each type of need.  The majority    City of Ashland  F‐3 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  of these people would need a bus to evacuate.  It should be noted that about 8.7% of these  people have their own transportation but have a walking or mobility issue/disability.  Commuters  Figure F‐7 presents the distribution of the number of commuters in each household. Commuters  are defined as household members who travel to work or college on a daily basis. The data shows  an average of 0.52 commuters per household in the study area, and approximately 36% of  households have at least one commuter.   Commuter Travel Modes  Figure F‐8 presents the mode of travel that commuters use on a daily basis. The vast majority of  commuters use their private automobiles to travel to work.  The data shows an average of 1.06  employees per vehicle, assuming 2 people per vehicle – on average – for carpools.  Commuter Travel Patterns  Figure F‐9 presents the destination area code that commuters travel to on a daily basis.  Of the  respondents who commute on a daily basis, approximately 62% work within Ashland (97520 area  code).  Of the remaining 38%‐‐12% commute to 97504, 9% commute to 97501 and the remaining  commute to other locations.  F.3.2 Evacuation Response  Several questions were asked to gauge the population’s response to an emergency. These are  now discussed:  “How many vehicles would your household use during a wildfire evacuation?” The response is  shown in Figure F‐1010. On average, evacuating households would use 1.43 vehicles.  “Would your family await the return of other family members prior to evacuating the area?”   Of the survey participants who responded, approximately 39% said they would await the return  of other family members before evacuating and 61% indicated they would not await the return  of other family members.  “What type of pet(s) and/or animal(s) do you have?”  Based on the responses, approximately  62% of the households have pets and/or animals. Of the households that own pets and/or  animals, 90.5% of them indicated that they own a domesticated animal (or household pet). This  category includes dogs, cats, birds, reptiles, and fish. Approximately 6.5% of households own  farm animals like horses, chickens, goats, and pigs. Approximately 3% of households indicated  that they own other pets/animals but did not specify.   “If you have a household pet and/or an animal, would you take your pet with you if you were  asked to evacuate the area?” Based on the responses to the survey 98% of households that own  pets and/or animals would take them during an evacuation; the remaining 2% would leave them  at home. Of the respondents who would elect to take their animals with them during an  evacuation, 18% would take them to a shelter, and 80% would take them somewhere else. Of  the households with pets and/or animals, 96% indicated that they have sufficient room in their    City of Ashland  F‐4 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  vehicles to evacuate with them. Approximately 2% would use a trailer to evacuate their  pet/animal.   “Emergency officials advise you to take shelter at home in an emergency. Would you?” This  question is designed to elicit information regarding compliance with instructions to shelter‐in‐  place. The results indicate that 94% of households who are advised to shelter‐in‐place would do  so; the remaining 6% would choose to evacuate the area. Therefore, 6% of the population within  the shadow region and within the EMZs not advised to evacuate will voluntarily evacuate.  “Emergency officials advise you to evacuate due to a wildfire. Where would you evacuate to?”   Based on the responses, approximately 39% would evacuate to a friend/relative’s home.  Approximately 29% answered “Don’t Know/Other”.  Approximately 24% would evacuate to a  hotel, motel, or campground. Less than one percent would choose not to evacuate. See Figure  F‐11 for complete results.   “Emergency officials advise you to evacuate. Would you notify a neighbor or friend to evacuate  as well?” This question is designed to elicit information regarding notification between residents  in the study area. Approximately 94% of respondents said they would notify a neighbor or a  friend.  The remaining 6% said they would not.  “How would you notify a neighbor or friend to evacuate during an emergency?” This question  is designed to see how respondents in the study area would notify neighbors or friends during an  evacuation, if they chose to do so. From the respondents who elected to notify a neighbor or  friend during an evacuation, the majority (39%) would notify in person. From the remaining  respondents, there was a near equal split between using text messages and phone calls at about  29% for each, and 3% of respondents would use some form of social media. Figure F‐12 displays  these results.   “How would you rate the cell phone coverage in your area?” Figure F‐13 presents how the  respondents rated cell phone coverage in their area. The purpose of this question was to gain  insight into how well a cell phone based alert and/or notification would be received.  This  question was added for informational purposes only and was not used in this study. As shown in  the figure, the data is more heavily weighted towards good or better with 85% of respondents  rating their cell phone reception in their area as good, very good, or excellent.   The remaining  approximately 15% rated cell phone coverage as fair, poor or very poor in their area.  (Less than  one percent indicated that they do not have a cell phone available.)  “Have you opted into your local Emergency Alert and Warning systems?” Figure F‐14 displays  the percentages of respondents who have opted into their local emergency alert and warning  systems and by method. The majority of the study area residents who are registered are opted  into either NIXLE or Citizen Alert (99 percent) while a few indicated they are opted into other  emergency alert systems (less than one percent).  Of the respondents, 17 percent indicated that  they registered using their residential phone number, 79 percent using their cell phone number,  38 percent using their email address and/or 75 percent opted in by text message. It should be  noted some people are opted into multiple methods of notification.     City of Ashland  F‐5 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  F.3.3 Time Distribution Results  The survey asked several questions about the amount of time it takes to perform certain pre‐ evacuation activities. These activities involve actions taken by residents during the course of their  day‐to‐day lives. Thus, the answers fall within the realm of the responder’s experience.   The mobilization distributions provided below are the result of having applied the analysis  described in Section 5.4.1 on the component activities of the mobilization.  “How long would it take you to notify a neighbor or friend to evacuate?” This question is  designed to see how long it would take respondents to notify a neighbor or friend should they  choose to do so. From the respondents who elected to notify a neighbor or friend during an  evacuation, approximately 63% responded they would notify them in 5 minutes or less, 22% said  it would take them between 6 and 10 minutes to notify a neighbor or friend, and 10% said it  would take them between 11 and 15 minutes. The remaining approximately 5% aid it would take  them 20 minutes or more to notify a neighbor or friend during an evacuation. This distribution is  displayed in Figure F‐15.   “How long does it take the commuter to complete preparation for leaving work/college?”  Figure F‐16 presents the cumulative distribution; in all cases, the activity is completed by 60  minutes. Approximately, 90% can leave in less than 30 minutes.  “How long would it take the commuter to travel home?”  Figure F‐17 presents the work to home  travel time for the EMZ. Approximately 92% of commuters can arrive home within 30 minutes of  leaving work; all within 60 minutes.  “How long would it take the family to pack clothing, secure the house, and load the car?”  Figure  F‐18 presents the time required to prepare for leaving on an evacuation trip. In many ways this  activity mimics a family’s preparation for a short holiday or weekend away from home. Hence,  the responses represent the experience of the responder in performing similar activities.  The distribution shown in Figure F‐18 has a long “tail.” Approximately 90% of households can be  ready to leave home within 105 minutes; the remaining 10% of households require up to an  additional 90 minutes.   F.4 Conclusions  The demographic survey provides valuable, relevant data associated with the study area  population. This data is used to quantify demographics specific to the study area and  “mobilization time”, which can influence evacuation time estimates.         City of Ashland  F‐6 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure F‐1.  Household Size in the Study Area        Figure F‐2.  Vehicle Availability  0% 10% 20% 30% 40% 50% 60% 12345+ Pe r c e n t o f  Ho u s e h o l d s People  Household Size 0% 10% 20% 30% 40% 50% 01234+ Pe r c e n t o f  Ho u s e h o l d s Vehicles Vehicle Availability   City of Ashland  F‐7 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure F‐3.  Vehicle Availability ‐ 1 to 4 Person Households        Figure F‐4.  Vehicle Availability – 5 to 7+ Person Households    0% 20% 40% 60% 80% 100% 012345+ Pe r c e n t o f  Ho u s e h o l d s Vehicles Distribution of Vehicles by HH Size 1‐5 Person Households 1 Person 2 People 3 People 4 People 5 People 0% 20% 40% 60% 80% 100% 012345+ Pe r c e n t o f  Ho u s e h o l d s Vehicles Distribution of Vehicles by HH Size 5‐9+ Person Households 6 People 7 People 8 People 9+ People   City of Ashland  F‐8 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure F‐5.  Electric Vehicle Ownership    Figure F‐6.  Functional or Transportation Needs  0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% ZERO (NONE)ONE TWO + Pe r c e n t o f  Ho u s e h o l d s Electric Cars 0% 10% 20% 30% 40% 50% Bus Medical Bus/Van Wheelchair Accessible Vehicle Ambulance Walking/Mobility Issues/Disability (has vehicle) Pe r c e n t o f  Ho u s e h o l d s  wi t h  Fu n c t i o n a l  or   Tr a n s p o r t a t i o n  Ne e d s Type of Need Functional or Transportation Needs   City of Ashland  F‐9 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0      Figure F‐7.  Commuters in Households in the Study Area        Figure F‐8.  Modes of Travel in the Study Area  0% 10% 20% 30% 40% 50% 60% 70% 01234+ Pe r c e n t o f  Ho u s e h o l d s Commuters Commuters Per Household 0% 20% 40% 60% 80% 100% Bus Walk/Bike Drive Alone Carpool (2+) Pe r c e n t  of  Co m m u t e r s Mode of Travel Travel Mode to Work   City of Ashland  F‐10 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0      Figure F‐9.  Commuter Travel Patterns        Figure F‐10.  Number of Vehicles Used for Evacuation   0% 20% 40% 60% 80% Pe r c e n t  of  Co m m u t e r s Zip Code Commuter Travel Patterns 0% 20% 40% 60% 80% 100% 01234+ Pe r c e n t  of  Ho u s e h o l d s Vehicles Evacuating Vehicles Per Household   City of Ashland  F‐11 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure F‐11.  Study Area Shelter Locations          Figure F‐12.  Method to Notify a Friend/Neighbor  0% 10% 20% 30% 40% Friend/Relative Home Reception Center A Hotel, Motel, or Campground A Second/Seasonal Home Would not Evacuate Don't Know/Other Pe r c e n t o f  Ho u s e h o l d s Shelter Locations 0% 20% 40% TEXT MESSAGE PHONE CALL SOCIAL MEDIA IN PERSON Pe r c e n t o f  Ho u s e h o l d s Method to Notify a Friend/Neighbor   City of Ashland  F‐12 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0       Figure F‐13.  Cell Phone Coverage        Figure F‐14. Emergency Alert Opt‐in Method by System  0% 20% 40% EXCELLENT VERY GOOD GOOD FAIR POOR VERY POOR DON'T HAVE A CELL PHONE Pe r c e n t o f  Ho u s e h o l d s Cell Phone Coverage 0% 5% 10% 15% 20% 25% 30% With Residential Phone With Cellular Phone With Email With Text Message Pe r c e n t  of  Ho u s e h o l d s Emergency Alert Opt‐in Method by System OPTED IN CITIZEN ALERT OPTED IN NIXLE BOTH CITIZEN ALERT AND NIXLE OTHER SYSTEMS   City of Ashland  F‐13 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0        Figure F‐15. Notification Time      Figure F‐16. Time Required to Prepare to Leave Work/College  0% 20% 40% 60% 80% 100% 0 1020304050 Pe r c e n t o f  Ho u s e h o l d s Preparation Time (min) Notification Time 0% 20% 40% 60% 80% 100% 0 10203040506070 Pe r c e n t  of  Co m m u t e r s Preparation Time (min) Time to Prepare to Leave Work/College   City of Ashland  F‐14 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0     Figure F‐17. Time to Travel Home from Work/College         Figure F‐18. Time to Prepare Home for Evacuation 0% 20% 40% 60% 80% 100% 0 10203040506070 Pe r c e n t o f  Co m m u t e r s Travel Time (min) Work to Home Travel 0% 20% 40% 60% 80% 100% 0 60 120 180 240 Pe r c e n t o f  Ho u s e h o l d s Preparation Time (min) Preparation Time with Everyone Home   City of Ashland  F‐15 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  ATTACHMENT A      Demographic Survey Instrument   City of Ashland  F‐16 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0      City of Ashland Wildfire Egress Study  * Required Purpose  The City of Ashland is currently undertaking an evacuation study to determine how long it would take to evacuate the City under different circumstances (weekday versus weekend, midday versus evening, etc.). The results of this study will be used to enhance emergency response plans for the City and help protect our residents and visitors. The survey below includes questions designed to estimate demographics for the City that are not available from the U.S. Census Bureau. These demographics help determine the number of vehicles that will be evacuating the City in the event of an emergency. The survey also includes questions designed to estimate the time needed by residents and visitors to prepare to evacuate. Please do not provide your name or any personal information, and the survey should take less than 5 minutes to complete. 1. What is your home zip code? *    Mark only one oval. 97520 97530 97535 97501 97502 97503 97504 Prefer not to say Other:   City of Ashland  F‐17 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    2A. In total, how many running cars, or other vehicles are usually available to the  household?  Mark only one oval. ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE OR MORE ZERO (NONE) PREFER NOT TO SAY 2B. Of these running cars, or other vehicles, how many of them are powered by  electric?  Mark only one oval. ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE OR MORE ZERO (NONE) PREFER NOT TO SAY   City of Ashland  F‐18 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0          2C. If you didn't have a car, would you be able to get a ride out of the area with a  neighbor or friend?  Mark only one oval. YES NO YES, IF THEY WERE HOME UNSURE PREFER NOT TO SAY 3. Please specify the number of people in your household who require Functional or  Transportation needs (public/private transportation assistance ‐ bus ‐ or specialized  vehicle due to a medical condition ‐ wheelchair transport or ambulance) in an  evacuation:     Mark only one oval per row. 0 1 2 3 4 More than 4 If Other for Question 3, Please Specify:        Bus Medical Bus/Van Wheelchair Accessible Vehicle Ambulance Other   City of Ashland  F‐19 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0                                              4. How many vehicles would your household use during a wildfire evacuation?    Mark only one oval. 0 (NONE) 1 2 3 4 5 6 7 8 9 OR MORE I WOULD EVACUATE BY BICYCLE I WOULD EVACUATE BY BUS PREFER NOT TO SAY   City of Ashland  F‐20 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0                          5. How many people usually live in this household?    Mark only one oval. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 OR MORE PREFER NOT TO SAY   City of Ashland  F‐21 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0      City of Ashland  F‐22 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0                                                                8‐2. What zip code does Commuter #2 commute to for work or college?            8‐3. What zip code does Commuter #3 commute to for work or college?            8‐4. What zip code does Commuter #4 commute to for work or college?        City of Ashland  F‐23 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0                  9‐1. How much time on average, would it take Commuter #1 to travel home from work or  college?    Mark only one oval. 5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS PREFER NOT TO SAY Other: If Over 2 Hours for Question 9‐1, Please Specify:          City of Ashland  F‐24 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0                  9‐2. How much time on average, would it take Commuter #2 to travel home from work or  college?  Mark only one oval. 5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS PREFER NOT TO SAY Other: If Over 2 Hours for Question 9‐2, Please Specify:          City of Ashland  F‐25 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0                  9‐3. How much time on average, would it take Commuter #3 to travel home from work or  college?  Mark only one oval. 5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS PREFER NOT TO SAY Other: If Over 2 Hours for Question 9‐3, Please Specify:          City of Ashland  F‐26 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0                  9‐4. How much time on average, would it take Commuter #4 to travel home from work or  college?  Mark only one oval.   5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS PREFER NOT TO SAY Other: If Over 2 Hours for Question 9‐4, Please Specify:          City of Ashland  F‐27 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0              10‐1. A wildfire is impacting the area where you live, work or go to college, approximately  how much time would it take Commuter #1 to complete preparation for leaving work or  college prior to starting the trip home?  Mark only one oval. 5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS PREFER NOT TO SAY Other: If Over 2 Hours for Question 10‐1, Please Specify:          City of Ashland  F‐28 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0                10‐2. A wildfire is impacting the area where you live, work or go to college, approximately  how much time would it take Commuter #2 to complete preparation for leaving work or  college prior to starting the trip home?    Mark only one oval.   5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS PREFER NOT TO SAY Other: If Over 2 Hours for Question 10‐2, Please Specify:          City of Ashland  F‐29 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0              10‐3. A wildfire is impacting the area where you live, work or go to college, approximately  how much time would it take Commuter #3 to complete preparation for leaving work or  college prior to starting the trip home?    Mark only one oval.   5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS PREFER NOT TO SAY Other: If Over 2 Hours for Question 10‐3, Please Specify:          City of Ashland  F‐30 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0              10‐4. A wildfire is impacting the area where you live, work or go to college,  approximately how much time would it take Commuter #4 to complete preparation for  leaving work or college prior to starting the trip home?    Mark only one oval. 5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR, BUT LESS THAN 1 HOUR 15 MINUTES BETWEEN 1 HOUR 16 MINUTES AND 1 HOUR 30 MINUTES BETWEEN 1 HOUR 31 MINUTES AND 1 HOUR 45 MINUTES BETWEEN 1 HOUR 46 MINUTES AND 2 HOURS OVER 2 HOURS PREFER NOT TO SAY Other: 30. If Over 2 Hours for Question 10‐4, Please Specify:          City of Ashland  F‐31 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    11. If you were advised by local authorities to evacuate due to a wildfire, how much  time would it take the household to pack clothing, medications, secure the house,  load the car, and complete preparations prior to evacuating the area?  Mark only one oval. LESS THAN 15 MINUTES 15-30 MINUTES 31-45 MINUTES 46 MINUTES - 1 HOUR 1 HOUR TO 1 HOUR 15 MINUTES 1 HOUR 16 MINUTES TO 1 HOUR 30 MINUTES 1 HOUR 31 MINUTES TO 1 HOUR 45 MINUTES 1 HOUR 46 MINUTES TO 2 HOURS 2 HOURS TO 2 HOURS 15 MINUTES 2 HOURS 16 MINUTES TO 2 HOURS 30 MINUTES 2 HOURS 31 MINUTES TO 2 HOURS 45 MINUTES 2 HOURS 46 MINUTES TO 3 HOURS 3 HOURS TO 3 HOURS 15 MINUTES 3 HOURS 16 MINUTES TO 3 HOURS 30 MINUTES 3 HOURS 31 MINUTES TO 3 HOURS 45 MINUTES 3 HOURS 46 MINUTES TO 4 HOURS 4 HOURS TO 4 HOURS 15 MINUTES 4 HOURS 16 MINUTES TO 4 HOURS 30 MINUTES 4 HOURS 31 MINUTES TO 4 HOURS 45 MINUTES 4 HOURS 46 MINUTES TO 5 HOURS 5 HOURS TO 5 HOURS 30 MINUTES 5 HOURS 31 MINUTES TO 6 HOURS OVER 6 HOURS WILL NOT EVACUATE PREFER NOT TO SAY Other:   City of Ashland  F‐32 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0                                      If Over 6 Hours for Question 11, Please Specify:            12. Please choose one of the following:  If you do not know what you would do, or you prefer not to answer, please leave this question blank. Mark only one oval. During a wildfire situation, I would await the return of household members to evacuate together. During a wildfire situation, I would evacuate independently and meet other household members later. 13A. Emergency officials advise you to not evacuate in a wildfire emergency  because you are not in the area of risk. Would you:  Mark only one oval. NOT EVACUATE EVACUATE DON'T KNOW/PREFER NOT TO SAY   City of Ashland  F‐33 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0                            evacuate to?  Mark only one oval. A RELATIVE’S OR FRIEND’S HOME A RECEPTION CENTER A HOTEL, MOTEL OR CAMPGROUND A SECOND/SEASONAL HOME WOULD NOT EVACUATE DON'T KNOW OTHER (Specify Below) PREFER NOT TO SAY Fill in OTHER answers for 13B            14A. Do you have any pet(s) and/or animal(s)? *    Mark only one oval. YES NO PREFER NOT TO SAY   City of Ashland  F‐34 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0                      14B. What type of pet(s) and/or animal(s) do you have?    Check all that apply. DOG CAT BIRD REPTILE HORSE FISH CHICKEN GOAT PIG OTHER SMALL PETS/ANIMALS (Specify Below) OTHER LARGE PETS/ ANIMALS (Specify Below) Other: Mark only one oval. PREFER NOT TO SAY 14C. What would you do with your pet(s) and/or animal(s) if you had to evacuate?    Mark only one oval. TAKE PET WITH ME TO A SHELTER TAKE PET WITH ME SOMEWHERE ELSE LEAVE PET AT HOME PREFER NOT TO SAY   City of Ashland  F‐35 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0                              14D. Do you have sufficient room in your vehicle(s) to evacuate with your pet(s)  and/or animal(s)?  Mark only one oval. YES NO WILL USE A TRAILER PREFER NOT TO SAY Other: 15. How would you rate the cell phone coverage in your area?    Mark only one oval. EXCELLENT VERY GOOD GOOD FAIR POOR VERY POOR DON'T HAVE A CELL PHONE PREFER NOT TO SAY   City of Ashland  F‐36 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0                    City of Ashland  F‐37 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0      17B. How would you notify your neighbor or friend to evacuate?    Check all that apply. TEXT MESSAGE PHONE CALL SOCIAL MEDIA IN PERSON PREFER NOT TO SAY Other: 17C. How long would it take you to notify your neighbor or friend to evacuate?    Mark only one oval. 5 MINUTES OR LESS 6-10 MINUTES 11-15 MINUTES 16-20 MINUTES 21-25 MINUTES 26-30 MINUTES 31-35 MINUTES 36-40 MINUTES 41-45 MINUTES 46-50 MINUTES 51-55 MINUTES 56 - 1 HOUR OVER 1 HOUR PREFER NOT TO SAY APPENDIX G  Evacuation Regions   City of Ashland G‐1 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  G EVACUATION REGIONS  This appendix presents the evacuation percentages for each Evacuation Region (Table G‐1) and  maps of all Evacuation Regions.  The shelter‐in‐place percentages presented in Table G‐1 are  based on the methodology discussed in assumption 3 of Section 2.3 and the results of the  demographic survey.  The evacuation regions were created based on the City of Ashland Evacuation Management  Zones (EMZs).  Regions R01 through R10 represent evacuations of each individual EMZ by itself.  Regions R11 through R17 are evacuations of combinations of EMZ based on the origin of a  potential wildfire and prevailing winds. Lastly, Region R18 is the evacuation of all EMZs at once.          City of Ashland G‐2 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Table G‐1.  Percent of EMZ Population Evacuating for Each Region    Region    Emergency Management Zone (EMZ)  Description 1 2 3 4 5 6 7 8 9 10  R01 EMZ 1 100% 6% 6% 6% 6% 6% 6% 6% 6% 6%  R02 EMZ 2 6% 100% 6% 6% 6% 6% 6% 6% 6% 6%  R03 EMZ 3 6% 6% 100% 6% 6% 6% 6% 6% 6% 6%  R04 EMZ 4 6% 6% 6% 100% 6% 6% 6% 6% 6% 6%  R05 EMZ 5 6% 6% 6% 6% 100% 6% 6% 6% 6% 6%  R06 EMZ 6 6% 6% 6% 6% 6% 100% 6% 6% 6% 6%  R07 EMZ 7 6% 6% 6% 6% 6% 6% 100% 6% 6% 6%  R08 EMZ 8 6% 6% 6% 6% 6% 6% 6% 100% 6% 6%  R09 EMZ 9 6% 6% 6% 6% 6% 6% 6% 6% 100% 6%  R10 EMZ 10 6% 6% 6% 6% 6% 6% 6% 6% 6% 100%  R11  Western Ashland  ‐ EMZ1, EMZ2,  EMZ3, EMZ4  100% 100% 100% 100% 6% 6% 6% 6% 6% 6%  R12  Eastern Ashland ‐  EMZ5, EMZ6,  EMZ7, EMZ8,  EMZ9, EMZ10  6% 6% 6% 6% 100% 100% 100% 100% 100% 100%  R13  Northern Ashland  ‐ EMZ1, EMZ2,  EMZ10  100% 100% 6% 6% 6% 6% 6% 6% 6% 100%  R14  Central Ashland ‐  EMZ3, EMZ7,  EMZ8, EMZ9  6% 6% 100% 6% 6% 6% 100% 100% 100% 6%  R15  Southern Ashland  ‐ EMZ4, EMZ5,  EMZ6  6% 6% 6% 100% 100% 100% 6% 6% 6% 6%  R16  Northern and  Central Ashland ‐  EMZ1, EMZ2,  EMZ3, EMZ7,  EMZ8, EMZ9,  EMZ10  100% 100% 100% 6% 6% 6% 100% 100% 100% 100%  R17  Southern and  Central Ashland ‐  EMZ3, EMZ4,  EMZ5, EMZ6,  EMZ7, EMZ8,  EMZ9  6% 6% 100% 100% 100% 100% 100% 100% 100% 6%  R18 All EMZs 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%  EMZ(s) Shelter‐in‐Place EMZ(s) Evacuate    City of Ashland G‐3 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure G‐1.  Region R01    City of Ashland G‐4 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure G‐2.  Region R02    City of Ashland G‐5 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure G‐3.  Region R03    City of Ashland G‐6 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure G‐4.  Region R04    City of Ashland G‐7 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure G‐5.  Region R05    City of Ashland G‐8 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure G‐6.  Region R06    City of Ashland G‐9 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure G‐7.  Region R07    City of Ashland G‐10 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure G‐8.  Region R08    City of Ashland G‐11 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure G‐9.  Region R09    City of Ashland G‐12 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure G‐10.  Region R10    City of Ashland G‐13 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure G‐11.  Region R11    City of Ashland G‐14 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure G‐12.  Region R12   City of Ashland G‐15 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure G‐13.  Region R13    City of Ashland G‐16 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure G‐14.  Region R14    City of Ashland G‐17 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure G‐15.  Region R15    City of Ashland G‐18 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure G‐16.  Region R16    City of Ashland G‐19 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure G‐17.  Region R17    City of Ashland G‐20 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure G‐18.  Region R18  APPENDIX H  Evacuation Roadway Network   City of Ashland H‐1 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  H. EVACUATION ROADWAY NETWORK  This appendix presents the evacuation roadway network used in the study. As discussed in  Section 1.3, a link‐node analysis network was constructed to model the roadway network  within the study area. Figure H‐1 provides an overview of the link‐node analysis network. The  figure has been divided up into 14 more detailed figures (Figure H‐2 through Figure H‐15) which  show each of the links and nodes in the network.    The analysis network was calibrated using the observations made during the field survey  conducted in July 2020. Table H‐1 lists the characteristics of each roadway section modeled in  the study area. Each link is identified by its road name and the upstream and downstream node  numbers. The geographic location of each link can be observed by referencing the grid map  number provided in Table H‐1. The roadway type identified in Table H‐1  is generally based on  the following criteria:   Freeway:  limited access highway, 2 or more lanes in each direction, high free flow  speeds   Freeway ramp: ramp on to or off of a limited access highway   Major arterial:  3 or more lanes in each direction   Minor arterial:  2 or more lanes in each direction   Collector:  single lane in each direction   Local roadways:  single lane in each direction, local roads with low free flow speeds  The term, “No. of Lanes” in Table H‐1 identifies the number of lanes that extend throughout the  length of the link.  Many links have additional lanes on the immediate approach to an  intersection (turn pockets); these have been recorded and entered into the input stream for the  DYNEV II System.  As discussed in Section 1.3, lane width and shoulder width were not physically measured during  the road survey. Rather, estimates of these measures were based on visual observations and  recorded images.  Table H‐2 identifies each node in the network that is controlled and the type of control (stop  sign, yield sign, pre‐timed signal, actuated signal, traffic control point) at that node.  Uncontrolled nodes are not included in Table H‐2. The location of each node can be observed  by referencing the grid map number provided.    City of Ashland H‐2 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Table H‐1. Evacuation Roadway Network Characteristics  Link #  Up‐  Stream  Node  Down‐  Stream  Node Roadway Name Roadway Type  Length  (ft.)  No.  of  Lanes  Lane  Width  (ft.)  Shoulder  Width  (ft.)  Saturation  Flow  Rate  (pcphpl)  Free  Flow  Speed  (mph)  Grid  Number  1 1 67 OR‐99 MINOR ARTERIAL 1,080 2 12 4 1,900 45 1  2 1 190 COLVER RD LOCAL ROADWAY 196 1 12 4 1,700 40 1  3 1 222 SUNCREST RD COLLECTOR 489 1 12 4 900 20 1  4 2 38 OR‐99 COLLECTOR 2,116 1 12 4 1,700 45 13  5 2 336 CROWSON RD LOCAL ROADWAY 2,355 1 12 4 1,700 40 14  6 3 4 I‐5 FREEWAY 2,440 2 12 8 2,250 70 13  7 3 10 I‐5 FREEWAY 2,689 2 12 8 2,250 70 14  8 4 3 I‐5 FREEWAY 2,440 2 12 8 2,250 70 13  9 4 5 I‐5 FREEWAY 1,833 2 12 8 2,250 70 11  10 4 8 I‐5 FREEWAY RAMP FREEWAY RAMP 747 2 12 4 1,750 45 11  11 5 4 I‐5 FREEWAY 1,833 2 12 8 2,250 70 11  12 5 6 I‐5 FREEWAY 2,471 2 12 8 2,250 70 11  13 5 7 I‐5 FREEWAY RAMP FREEWAY RAMP 933 1 12 4 1,750 45 11  14 6 5 I‐5 FREEWAY 2,471 2 12 8 2,250 70 11  15 6 14 I‐5 FREEWAY 1,206 2 12 8 2,250 70 11  16 7 4 I‐5 FREEWAY RAMP FREEWAY RAMP 986 1 12 4 1,700 45 11  17 7 8 OR‐66 COLLECTOR 575 1 12 4 1,750 30 11  18 8 5 I‐5 FREEWAY RAMP FREEWAY RAMP 1,151 1 12 4 1,700 45 11  19 8 7 OR‐66 COLLECTOR 575 1 12 4 1,750 30 11  20 8 74 ASHLAND ST COLLECTOR 844 1 12 4 1,575 35 11  21 9 7 OR‐66 LOCAL ROADWAY 1,131 2 12 4 1,750 30 11  22 9 306 TOLMAN CREEK ROAD COLLECTOR 653 1 12 4 1,350 30 11  23 9 307 TOLMAN CREEK ROAD COLLECTOR 1,160 1 12 4 1,350 30 11  24 10 3 I‐5 FREEWAY 2,689 2 12 8 2,250 70 14  25 10 11 I‐5 FREEWAY 2,764 2 12 8 2,250 70 14  26 11 10 I‐5 FREEWAY 2,764 2 12 8 2,250 70 14  27 11 12 I‐5 FREEWAY 2,608 2 12 8 2,250 70 14  28 12 11 I‐5 FREEWAY 2,608 2 12 8 2,250 70 14  29 12 13 I‐5 FREEWAY 2,196 2 12 8 2,250 70 14  30 13 12 I‐5 FREEWAY 2,196 2 12 8 2,250 70 14    City of Ashland H‐3 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Link #  Up‐  Stream  Node  Down‐  Stream  Node Roadway Name Roadway Type  Length  (ft.)  No.  of  Lanes  Lane  Width  (ft.)  Shoulder  Width  (ft.)  Saturation  Flow  Rate  (pcphpl)  Free  Flow  Speed  (mph)  Grid  Number  32 14 6 I‐5 FREEWAY 1,206 2 12 8 2,250 70 11  33 14 15 I‐5 FREEWAY 2,680 2 12 8 2,250 70 11  34 15 14 I‐5 FREEWAY 2,680 2 12 8 2,250 70 11  35 15 16 I‐5 FREEWAY 2,027 2 12 8 2,250 70 8  36 16 15 I‐5 FREEWAY 2,027 2 12 8 2,250 70 8  37 16 17 I‐5 FREEWAY 3,454 2 12 8 2,250 70 8  38 17 16 I‐5 FREEWAY 3,454 2 12 8 2,250 70 8  39 17 18 I‐5 FREEWAY 507 2 12 8 2,250 70 8  40 18 17 I‐5 FREEWAY 507 2 12 8 2,250 70 8  41 18 19 I‐5 FREEWAY 2,260 2 12 8 2,250 70 7  42 19 18 I‐5 FREEWAY 2,260 2 12 8 2,250 70 7  43 19 20 I‐5 FREEWAY 984 2 12 8 2,250 70 5  44 20 19 I‐5 FREEWAY 982 2 12 8 2,250 70 5  45 20 21 I‐5 FREEWAY 2,397 2 12 8 2,250 70 5  46 21 20 I‐5 FREEWAY 2,397 2 12 8 2,250 70 5  47 21 22 I‐5 FREEWAY 2,120 2 12 8 2,250 70 5  48 22 21 I‐5 FREEWAY 2,120 2 12 8 2,250 70 5  49 22 23 I‐5 FREEWAY 2,850 2 12 8 2,250 70 5  50 23 22 I‐5 FREEWAY 2,850 2 12 8 2,250 70 5  51 23 24 I‐5 FREEWAY 1,270 2 12 8 2,250 70 5  52 24 23 I‐5 FREEWAY 1,270 2 12 8 2,250 70 5  53 24 25 I‐5 FREEWAY 1,855 2 12 8 2,250 70 4  54 24 73 I‐5 FREEWAY RAMP FREEWAY RAMP 1,159 1 12 4 1,750 45 5  55 25 24 I‐5 FREEWAY 1,854 2 12 8 2,250 70 4  56 25 26 I‐5 FREEWAY 2,912 2 12 8 2,250 70 4  57 25 72 I‐5 FREEWAY RAMP FREEWAY RAMP 1,351 1 12 4 1,700 30 4  58 26 25 I‐5 FREEWAY 2,912 2 12 8 2,250 70 4  59 26 27 I‐5 FREEWAY 3,029 2 12 8 2,250 70 4  60 27 26 I‐5 FREEWAY 3,029 2 12 8 2,250 70 4  61 27 28 I‐5 FREEWAY 2,724 2 12 8 2,250 70 4  62 28 27 I‐5 FREEWAY 2,724 2 12 8 2,250 70 4  63 28 29 I‐5 FREEWAY 1,599 2 12 8 2,250 70 4    City of Ashland H‐4 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Link #  Up‐  Stream  Node  Down‐  Stream  Node Roadway Name Roadway Type  Length  (ft.)  No.  of  Lanes  Lane  Width  (ft.)  Shoulder  Width  (ft.)  Saturation  Flow  Rate  (pcphpl)  Free  Flow  Speed  (mph)  Grid  Number  64 28 91 I‐5 FREEWAY RAMP FREEWAY RAMP 580 1 12 4 1,700 45 4  65 29 28 I‐5 FREEWAY 1,598 2 12 8 2,250 70 4  66 29 30 I‐5 FREEWAY 2,020 2 12 8 2,250 70 2  67 29 90 I‐5 FREEWAY RAMP FREEWAY RAMP 290 1 12 4 1,700 45 4  68 30 29 I‐5 FREEWAY 2,020 2 12 8 2,250 70 2  69 30 31 I‐5 FREEWAY 2,656 2 12 8 2,250 70 1  70 31 30 I‐5 FREEWAY 2,656 2 12 8 2,250 70 1  71 32 13 OR‐99 FREEWAY RAMP 1,964 1 12 4 1,700 45 14  72 34 32 OR‐99 COLLECTOR 899 1 12 4 1,700 45 14  73 35 34 OR‐99 COLLECTOR 983 1 12 4 1,700 45 14  74 38 35 OR‐99 COLLECTOR 2,708 1 12 4 1,700 45 14  75 40 2 OR‐99 COLLECTOR 2,806 1 12 4 1,750 25 13  76 40 308 TOLMAN CREEK ROAD COLLECTOR 1,357 1 12 4 1,350 30 13  77 41 127 S MOUNTAIN AVE COLLECTOR 451 1 12 4 1,125 25 10  78 41 233 OR‐99 COLLECTOR 812 2 12 4 1,750 30 9  79 41 339 OR‐99 COLLECTOR 541 2 12 4 1,900 30 10  80 42 233 OR‐99 COLLECTOR 480 2 12 4 1,750 30 9  81 42 237 OR‐99 COLLECTOR 680 2 12 4 1,900 30 9  82 43 44 OR‐99 COLLECTOR 205 2 12 4 1,750 30 9  83 43 240 OR‐99 COLLECTOR 676 2 12 4 1,750 30 9  84 44 96 E MAIN ST COLLECTOR 1,675 1 12 4 1,350 30 9  85 44 148 LITHIA WAY MINOR ARTERIAL 338 2 12 4 1,750 20 9  86 45 227 LITHIA WAY MINOR ARTERIAL 477 2 12 4 1,750 20 9  87 46 254 LITHIA WAY MINOR ARTERIAL 304 2 12 4 1,900 20 9  88 46 256 OAK ST LOCAL ROADWAY 343 1 12 4 1,125 25 9  89 47 241 OR‐99 COLLECTOR 501 2 12 4 1,900 30 7  90 48 49 OR‐99 COLLECTOR 1,114 1 12 4 1,350 30 7  91 49 50 OR‐99 COLLECTOR 643 1 12 4 1,350 30 6  92 50 51 OR‐99 COLLECTOR 488 1 12 8 1,350 30 6  93 51 52 OR‐99 COLLECTOR 942 1 12 8 1,575 35 6  94 52 159 OR‐99 COLLECTOR 311 1 12 4 1,700 40 6  95 53 54 OR‐99 COLLECTOR 986 1 12 4 1,700 40 6    City of Ashland H‐5 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Link #  Up‐  Stream  Node  Down‐  Stream  Node Roadway Name Roadway Type  Length  (ft.)  No.  of  Lanes  Lane  Width  (ft.)  Shoulder  Width  (ft.)  Saturation  Flow  Rate  (pcphpl)  Free  Flow  Speed  (mph)  Grid  Number  96 54 55 OR‐99 COLLECTOR 319 1 12 4 1,700 40 6  97 55 56 OR‐99 COLLECTOR 1,007 1 12 8 1,700 50 6  98 56 57 OR‐99 COLLECTOR 906 1 12 4 1,700 50 5  99 57 58 OR‐99 COLLECTOR 804 1 12 4 1,700 50 5  100 58 242 OR‐99 COLLECTOR 687 2 12 4 1,750 50 5  101 59 179 S VALLEY VIEW RD COLLECTOR 737 1 12 4 1,575 35 4  102 59 244 OR‐99 COLLECTOR 2,298 2 12 8 1,900 50 4  103 60 61 OR‐99 COLLECTOR 3,013 1 12 8 1,700 55 4  104 60 180 TALENT AVE LOCAL ROADWAY 790 1 12 4 1,125 25 4  105 61 62 OR‐99 COLLECTOR 1,892 1 12 8 1,700 55 4  106 62 63 OR‐99 COLLECTOR 2,316 1 12 4 1,700 45 4  107 62 185 CREEL RD LOCAL ROADWAY 1,270 1 12 4 1,125 25 4  108 63 186 ARNOS LOCAL ROADWAY 954 1 12 4 1,125 25 4  109 63 245 OR‐99 COLLECTOR 1,065 1 12 4 1,700 45 4  110 64 65 OR‐99 MINOR ARTERIAL 2,114 2 12 4 1,750 45 3  111 65 193 W VALLEY VIEW RD LOCAL ROADWAY 1,152 2 12 4 1,900 40 3  112 65 294 OR‐99 MINOR ARTERIAL 727 2 12 4 1,900 45 3  113 66 1 OR‐99 MINOR ARTERIAL 584 2 12 4 1,750 45 1  114 67 68 OR‐99 MINOR ARTERIAL 1,318 2 12 4 1,900 45 1  115 68 69 OR‐99 MINOR ARTERIAL 2,396 1 12 4 1,275 45 1  116 70 108 OR‐66 MINOR ARTERIAL 974 2 12 4 1,750 30 10  117 70 109 OR‐99 COLLECTOR 1,176 2 12 4 1,750 45 10  118 70 123 OR‐99 COLLECTOR 273 2 12 4 1,750 30 10  119 72 24 I‐5 FREEWAY RAMP FREEWAY RAMP 627 1 12 4 1,700 45 5  120 72 73 S VALLEY VIEW RD COLLECTOR 851 1 12 4 1,575 35 4  121 73 25 I‐5 FREEWAY RAMP FREEWAY RAMP 792 1 12 4 1,700 30 4  122 74 8 ASHLAND ST COLLECTOR 841 1 12 4 1,750 35 11  123 74 75 ASHLAND ST COLLECTOR 567 1 12 4 1,575 35 11  124 75 74 ASHLAND ST COLLECTOR 572 1 12 4 1,575 35 11  125 75 332 ASHLAND ST COLLECTOR 431 1 12 4 1,575 35 12  126 77 78 GREEN SPRINGS HWY COLLECTOR 496 1 12 4 1,575 35 12  127 77 332 ASHLAND ST COLLECTOR 164 1 12 4 1,575 35 12    City of Ashland H‐6 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Link #  Up‐  Stream  Node  Down‐  Stream  Node Roadway Name Roadway Type  Length  (ft.)  No.  of  Lanes  Lane  Width  (ft.)  Shoulder  Width  (ft.)  Saturation  Flow  Rate  (pcphpl)  Free  Flow  Speed  (mph)  Grid  Number  128 78 79 GREEN SPRINGS HWY COLLECTOR 739 1 12 4 1,575 35 14  129 79 80 GREEN SPRINGS HWY COLLECTOR 732 1 12 4 1,575 35 14  130 80 81 GREEN SPRINGS HWY COLLECTOR 1,218 1 12 4 1,575 35 14  131 81 82 GREEN SPRINGS HWY COLLECTOR 491 1 12 4 1,700 35 14  132 82 83 GREEN SPRINGS HWY COLLECTOR 2,563 1 12 4 1,575 35 14  133 82 115 CROWSON RD LOCAL ROADWAY 758 1 12 4 1,700 40 14  134 83 84 GREEN SPRINGS HWY COLLECTOR 1,163 1 12 4 1,575 35 14  135 84 85 GREEN SPRINGS HWY COLLECTOR 1,832 1 12 4 1,575 35 14  136 85 86 GREEN SPRINGS HWY COLLECTOR 939 1 12 4 1,575 35 14  137 86 87 GREEN SPRINGS HWY COLLECTOR 2,326 1 12 4 1,575 35 14  138 87 88 GREEN SPRINGS HWY COLLECTOR 1,861 1 12 4 1,575 35 14  140 90 28 I‐5 FREEWAY RAMP FREEWAY RAMP 1,652 1 12 4 1,700 45 4  141 90 91 W VALLEY VIEW RD LOCAL ROADWAY 1,337 1 12 4 1,350 30 4  142 91 29 I‐5 FREEWAY RAMP FREEWAY RAMP 1,125 1 12 4 1,700 45 4  143 91 90 W VALLEY VIEW RD LOCAL ROADWAY 1,334 1 12 4 1,350 30 4  144 91 205 W VALLEY VIEW RD LOCAL ROADWAY 480 1 12 4 1,350 30 4  145 92 93 COLVER RD LOCAL ROADWAY 738 1 12 4 1,700 45 1  146 93 94 COLVER RD LOCAL ROADWAY 1,603 1 12 4 1,700 50 1  147 94 95 COLVER RD LOCAL ROADWAY 444 1 12 4 900 50 1  148 96 44 E MAIN ST COLLECTOR 1,676 1 12 4 1,750 30 9  149 96 97 E MAIN ST COLLECTOR 1,034 1 12 4 1,750 30 9  150 97 96 E MAIN ST COLLECTOR 1,034 1 12 4 1,350 30 9  151 97 98 E MAIN ST COLLECTOR 1,770 1 12 4 1,350 30 10  152 97 127 S MOUNTAIN AVE COLLECTOR 1,298 1 12 4 1,125 25 10  153 98 97 E MAIN ST COLLECTOR 1,769 1 12 4 1,750 30 10  154 98 112 E MAIN ST COLLECTOR 1,230 1 12 4 1,350 30 10  155 98 249 WIGHTMAN ST COLLECTOR 528 1 12 0 1,125 25 10  156 99 100 E MAIN ST COLLECTOR 584 1 12 4 1,350 30 10  157 100 101 E MAIN ST COLLECTOR 1,477 1 12 4 1,350 30 10  158 101 322 E MAIN ST COLLECTOR 388 1 12 4 1,350 30 11  159 102 103 E MAIN ST COLLECTOR 258 1 12 4 1,350 30 11  160 103 104 TOLMAN CREEK ROAD COLLECTOR 564 1 12 4 1,350 30 11    City of Ashland H‐7 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Link #  Up‐  Stream  Node  Down‐  Stream  Node Roadway Name Roadway Type  Length  (ft.)  No.  of  Lanes  Lane  Width  (ft.)  Shoulder  Width  (ft.)  Saturation  Flow  Rate  (pcphpl)  Free  Flow  Speed  (mph)  Grid  Number  161 103 105 E MAIN ST COLLECTOR 834 1 12 4 1,350 30 11  162 104 103 TOLMAN CREEK ROAD COLLECTOR 564 1 12 4 1,350 30 11  163 104 320 TOLMAN CREEK ROAD COLLECTOR 627 1 12 4 1,350 30 11  164 105 103 E MAIN ST COLLECTOR 829 1 12 4 1,350 30 11  165 105 106 E MAIN ST COLLECTOR 1,621 1 12 4 1,350 30 11  166 106 107 E MAIN ST COLLECTOR 596 1 12 4 1,125 25 11  167 107 302 E MAIN ST COLLECTOR 2,061 1 12 4 1,125 25 11  168 108 70 OR‐66 MINOR ARTERIAL 974 2 12 4 1,750 30 10  169 108 109 WALKER AVE LOCAL ROADWAY 646 1 12 4 1,750 25 10  170 108 110 OR‐66 MINOR ARTERIAL 1,378 2 12 4 1,900 30 10  171 108 124 WALKER AVE COLLECTOR 1,842 1 12 2 900 20 10  172 109 108 WALKER AVE LOCAL ROADWAY 646 1 12 4 1,750 25 10  173 109 111 OR‐99 COLLECTOR 1,431 1 12 4 1,700 45 13  174 110 113 OR‐66 MINOR ARTERIAL 1,026 2 12 4 1,750 30 10  175 110 315 NORMAL AVE LOCAL ROADWAY 640 1 12 4 1,125 25 10  176 111 275 OR‐99 COLLECTOR 253 1 12 4 1,700 40 13  177 112 99 E MAIN ST COLLECTOR 903 1 12 4 1,350 30 10  178 112 124 WALKER AVE COLLECTOR 1,592 1 12 2 900 20 10  179 113 312 FAITH AVE LOCAL ROADWAY 941 1 12 4 1,125 25 11  180 113 323 OR‐66 MINOR ARTERIAL 797 2 12 4 1,900 35 11  181 114 311 FAITH AVE LOCAL ROADWAY 676 1 12 4 1,125 25 13  182 114 317 OR‐99 COLLECTOR 1,012 1 12 4 1,700 40 13  183 115 82 CROWSON RD LOCAL ROADWAY 758 1 12 4 1,700 40 14  184 115 336 CROWSON RD LOCAL ROADWAY 890 1 12 4 1,700 40 14  185 116 65 E MAIN ST COLLECTOR 276 2 12 4 1,750 30 3  186 117 64 E RAPP RD LOCAL ROADWAY 876 1 12 4 1,125 25 4  187 117 187 TALENT AVE LOCAL ROADWAY 1,915 1 12 4 1,575 35 3  188 118 59 W JACKSON RD LOCAL ROADWAY 191 1 12 4 1,750 25 4  189 119 51 MAPLE ST LOCAL ROADWAY 478 1 12 4 1,125 25 6  190 120 215 S LAUREL ST LOCAL ROADWAY 421 1 12 4 1,125 25 6  191 121 48 N LAUREL ST LOCAL ROADWAY 1,055 1 12 4 1,125 25 7  192 121 146 W HERSEY ST LOCAL ROADWAY 596 1 12 4 1,125 25 7    City of Ashland H‐8 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Link #  Up‐  Stream  Node  Down‐  Stream  Node Roadway Name Roadway Type  Length  (ft.)  No.  of  Lanes  Lane  Width  (ft.)  Shoulder  Width  (ft.)  Saturation  Flow  Rate  (pcphpl)  Free  Flow  Speed  (mph)  Grid  Number  193 121 161 N LAUREL ST LOCAL ROADWAY 681 1 12 4 1,125 25 7  194 122 47 HELMAN ST LOCAL ROADWAY 1,495 1 12 4 1,750 25 7  195 122 121 W HERSEY ST LOCAL ROADWAY 630 1 12 4 1,125 25 7  196 122 160 HELMAN ST LOCAL ROADWAY 708 1 12 4 1,125 25 7  197 123 70 OR‐99 COLLECTOR 273 2 12 4 1,750 45 10  198 123 125 WIGHTMAN ST COLLECTOR 1,693 1 12 0 1,125 25 10  199 123 339 OR‐99 COLLECTOR 1,612 2 12 4 1,900 30 10  200 124 108 WALKER AVE COLLECTOR 1,841 1 12 2 1,750 20 10  201 124 112 WALKER AVE COLLECTOR 1,591 1 12 2 900 20 10  202 125 123 WIGHTMAN ST COLLECTOR 1,693 1 12 0 1,750 25 10  203 125 124 IOWA ST COLLECTOR 1,262 1 12 4 1,125 25 10  204 125 249 WIGHTMAN ST COLLECTOR 1,090 1 12 0 1,125 25 10  205 127 41 S MOUNTAIN AVE COLLECTOR 451 1 12 4 1,750 25 10  206 127 97 S MOUNTAIN AVE COLLECTOR 1,298 1 12 4 1,750 25 10  207 127 125 IOWA ST COLLECTOR 1,723 1 12 4 1,125 25 10  208 129 215 HIGH ST LOCAL ROADWAY 1,256 1 12 4 1,125 25 9  209 129 251 GRANITE ST LOCAL ROADWAY 408 1 12 4 1,125 25 9  210 130 250 GRANITE ST LOCAL ROADWAY 616 1 12 4 1,125 25 9  211 131 130 GRANITE ST LOCAL ROADWAY 1,496 1 12 4 1,125 25 9  212 132 131 GRANITE ST LOCAL ROADWAY 1,084 1 12 4 1,125 25 9  213 133 137 HOLLY ST LOCAL ROADWAY 1,220 1 12 4 1,125 25 9  214 133 143 GERSHAM ST LOCAL ROADWAY 493 1 12 4 1,125 25 9  215 134 43 OR‐99 COLLECTOR 429 2 12 4 1,900 30 9  216 134 44 E MAIN ST LOCAL ROADWAY 263 1 12 4 1,750 30 9  217 134 148 N 3RD ST LOCAL ROADWAY 252 1 12 4 1,125 25 9  218 135 142 LIBERTY ST LOCAL ROADWAY 1,344 1 12 4 1,125 25 9  219 135 235 ASHLAND ST LOCAL ROADWAY 357 1 12 4 1,125 25 9  220 136 137 HARRISON ST LOCAL ROADWAY 654 1 12 4 1,125 25 9  221 137 138 HARRISON ST LOCAL ROADWAY 514 1 12 4 1,125 25 9  222 137 142 HOLLY ST LOCAL ROADWAY 671 1 12 4 1,125 25 9  223 138 139 HARRISON ST LOCAL ROADWAY 440 1 12 4 1,125 25 9  224 138 141 IOWA ST LOCAL ROADWAY 652 1 12 4 1,125 25 9    City of Ashland H‐9 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Link #  Up‐  Stream  Node  Down‐  Stream  Node Roadway Name Roadway Type  Length  (ft.)  No.  of  Lanes  Lane  Width  (ft.)  Shoulder  Width  (ft.)  Saturation  Flow  Rate  (pcphpl)  Free  Flow  Speed  (mph)  Grid  Number  225 139 237 HARRISON ST LOCAL ROADWAY 190 1 12 4 1,125 25 9  226 141 42 LIBERTY ST LOCAL ROADWAY 252 1 12 4 1,750 25 9  227 142 141 LIBERTY ST LOCAL ROADWAY 491 1 12 4 1,125 25 9  228 143 134 GERSHAM ST LOCAL ROADWAY 1,494 1 12 4 1,125 25 9  229 143 217 IOWA ST LOCAL ROADWAY 968 1 12 4 1,125 25 9  230 144 147 E HERSEY ST LOCAL ROADWAY 2,465 1 12 4 1,125 25 7  231 144 3114 N MOUNTAIN AVE COLLECTOR 803 1 12 4 1,125 25 8  232 145 122 W HERSEY ST LOCAL ROADWAY 982 1 12 4 1,125 25 7  233 145 163 OAK ST COLLECTOR 1,730 1 12 4 1,125 25 7  234 146 49 W HERSEY ST LOCAL ROADWAY 457 1 12 4 1,125 25 7  235 147 145 E HERSEY ST LOCAL ROADWAY 227 1 12 4 1,125 25 7  236 148 238 LITHIA WAY MINOR ARTERIAL 462 2 12 4 1,750 20 9  237 149 150 WILMER ST LOCAL ROADWAY 629 1 12 4 1,125 25 6  238 150 49 WILMER ST LOCAL ROADWAY 869 1 12 4 1,125 25 6  239 150 119 SCENIC DR LOCAL ROADWAY 1,088 1 12 4 1,125 25 6  240 151 159 SHERIDAN ST LOCAL ROADWAY 1,062 1 12 4 1,125 25 6  241 151 286 SHERIDAN ST LOCAL ROADWAY 92 1 11 0 1,125 25 6  242 152 153 MONTE VISTA DR LOCAL ROADWAY 212 1 11 0 1,125 25 6  243 153 154 MONTE VISTA DR LOCAL ROADWAY 349 1 11 0 1,125 25 6  244 154 155 SCHOFIELD ST LOCAL ROADWAY 307 1 12 4 1,125 25 6  245 155 54 SCHOFIELD ST LOCAL ROADWAY 275 1 12 4 1,125 25 6  246 159 53 OR‐99 COLLECTOR 392 1 12 4 1,700 40 6  247 160 161 ORANGE ST LOCAL ROADWAY 687 1 12 4 1,125 25 7  248 161 121 N LAUREL ST LOCAL ROADWAY 681 1 12 4 1,125 25 7  249 161 162 ORANGE ST LOCAL ROADWAY 891 1 12 4 1,125 25 7  250 162 261 GLENN ST LOCAL ROADWAY 124 1 12 4 900 20 7  251 163 145 OAK ST COLLECTOR 1,730 1 12 4 1,125 25 7  252 163 164 OAK ST COLLECTOR 1,561 1 12 4 1,125 25 7  253 164 163 OAK ST COLLECTOR 1,561 1 12 4 1,125 25 7  254 164 168 OAK ST COLLECTOR 763 1 12 4 1,700 40 7  255 165 160 HELMAN ST LOCAL ROADWAY 741 1 12 4 1,125 25 7  256 166 165 HELMAN ST LOCAL ROADWAY 653 1 12 4 1,125 25 7    City of Ashland H‐10 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Link #  Up‐  Stream  Node  Down‐  Stream  Node Roadway Name Roadway Type  Length  (ft.)  No.  of  Lanes  Lane  Width  (ft.)  Shoulder  Width  (ft.)  Saturation  Flow  Rate  (pcphpl)  Free  Flow  Speed  (mph)  Grid  Number  257 167 164 E NEVADA ST LOCAL ROADWAY 804 1 12 4 1,125 25 7  258 167 166 HELMAN ST LOCAL ROADWAY 922 1 12 4 1,125 25 7  259 168 169 OAK ST COLLECTOR 663 1 12 4 1,700 40 7  260 169 170 OAK ST COLLECTOR 493 1 12 4 1,700 40 7  261 170 171 EAGLE MILL RD COLLECTOR 710 1 12 4 1,700 45 5  262 171 172 EAGLE MILL RD COLLECTOR 478 1 12 4 1,700 45 5  263 172 173 EAGLE MILL RD COLLECTOR 552 1 12 4 1,700 45 5  264 173 174 EAGLE MILL RD COLLECTOR 423 1 12 4 1,700 45 5  265 174 175 EAGLE MILL RD COLLECTOR 3,587 1 12 4 1,700 45 5  266 175 176 EAGLE MILL RD COLLECTOR 564 1 12 4 1,700 45 5  267 176 177 EAGLE MILL RD COLLECTOR 855 1 12 4 1,700 45 5  268 177 178 EAGLE MILL RD COLLECTOR 313 1 12 4 1,700 45 5  269 178 179 EAGLE MILL RD COLLECTOR 1,648 1 12 4 1,700 45 5  270 179 59 S VALLEY VIEW RD COLLECTOR 736 1 12 4 1,750 35 4  271 179 72 S VALLEY VIEW RD COLLECTOR 1,486 1 12 4 1,575 35 4  272 180 181 TALENT AVE LOCAL ROADWAY 547 1 12 4 1,125 25 4  273 181 182 TALENT AVE LOCAL ROADWAY 1,633 1 12 4 1,125 25 4  274 182 183 TALENT AVE LOCAL ROADWAY 500 1 12 4 1,125 25 4  275 183 184 TALENT AVE LOCAL ROADWAY 1,509 1 12 4 1,125 25 4  276 184 185 TALENT AVE LOCAL ROADWAY 366 1 12 4 1,125 25 4  277 185 62 CREEL RD LOCAL ROADWAY 1,270 1 12 4 1,125 25 4  278 185 186 TALENT AVE LOCAL ROADWAY 2,439 1 12 4 1,125 25 4  279 186 63 ARNOS LOCAL ROADWAY 954 1 12 4 1,125 25 4  280 186 117 TALENT AVE LOCAL ROADWAY 1,669 1 12 4 1,125 25 4  281 187 188 TALENT AVE LOCAL ROADWAY 515 1 12 4 1,575 35 3  282 188 206 TALENT AVE LOCAL ROADWAY 193 1 12 4 1,125 25 3  283 189 190 TALENT AVE LOCAL ROADWAY 351 1 12 4 1,350 30 1  284 190 1 COLVER RD LOCAL ROADWAY 196 1 12 4 1,750 40 1  285 190 191 COLVER RD LOCAL ROADWAY 1,077 1 12 4 1,700 40 1  286 191 192 COLVER RD LOCAL ROADWAY 375 1 12 4 1,700 40 1  287 192 92 COLVER RD LOCAL ROADWAY 4,566 1 12 4 1,700 50 1  288 193 248 W VALLEY VIEW RD LOCAL ROADWAY 521 2 12 4 1,750 40 4    City of Ashland H‐11 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Link #  Up‐  Stream  Node  Down‐  Stream  Node Roadway Name Roadway Type  Length  (ft.)  No.  of  Lanes  Lane  Width  (ft.)  Shoulder  Width  (ft.)  Saturation  Flow  Rate  (pcphpl)  Free  Flow  Speed  (mph)  Grid  Number  289 194 195 MOUNTAIN VIEW DR LOCAL ROADWAY 443 1 12 4 1,125 25 4  290 195 193 MOUNTAIN VIEW DR LOCAL ROADWAY 493 1 12 4 1,125 25 4  291 196 197 SUNCREST RD LOCAL ROADWAY 1,565 1 12 2 1,350 30 4  292 197 198 SUNCREST RD LOCAL ROADWAY 1,147 1 12 2 1,350 30 2  293 198 199 SUNCREST RD LOCAL ROADWAY 493 1 12 2 1,350 30 2  294 199 200 SUNCREST RD LOCAL ROADWAY 908 1 12 2 1,350 30 2  295 200 201 SUNCREST RD LOCAL ROADWAY 480 1 12 2 1,350 30 2  296 201 202 SUNCREST RD LOCAL ROADWAY 1,239 1 12 4 1,350 30 2  297 202 203 SUNCREST RD LOCAL ROADWAY 1,942 1 12 4 1,350 30 2  298 203 204 PAYNE RD COLLECTOR 1,294 1 12 2 675 45 2  299 205 196 W VALLEY VIEW RD LOCAL ROADWAY 829 1 12 4 1,350 30 4  300 206 231 E MAIN ST COLLECTOR 334 1 12 4 1,350 30 3  301 206 300 TALENT AVE LOCAL ROADWAY 503 1 12 4 1,350 30 3  302 207 206 MAIN ST LOCAL ROADWAY 1,951 1 12 4 1,125 25 3  303 208 207 WAGNER CREEK RD LOCAL ROADWAY 227 1 12 4 1,125 25 3  304 208 246 FOSS RD LOCAL ROADWAY 662 1 12 4 1,350 30 3  305 209 92 WALDEN RD LOCAL ROADWAY 2,505 1 12 4 1,700 45 3  306 210 208 WAGNER CREEK RD LOCAL ROADWAY 1,445 1 12 4 1,350 30 3  307 210 211 W RAPP RD COLLECTOR 2,601 1 12 4 1,350 30 3  308 211 212 E RAPP RD  LOCAL ROADWAY 196 1 12 4 900 20 3  309 212 213 E RAPP RD  LOCAL ROADWAY 631 1 12 4 1,125 25 3  310 213 117 E RAPP RD  LOCAL ROADWAY 665 1 12 4 1,125 25 3  311 214 267 PEACHY RD LOCAL ROADWAY 1,226 1 12 4 1,125 25 13  312 214 3109 WALKER AVE LOCAL ROADWAY 2,024 1 12 4 1,125 25 13  313 215 48 S LAUREL ST LOCAL ROADWAY 457 1 12 4 1,125 25 7  314 217 138 IOWA ST LOCAL ROADWAY 277 1 12 4 1,125 25 9  315 217 240 SHERMAN ST LOCAL ROADWAY 884 1 12 4 1,750 25 9  316 218 228 OR‐99 MINOR ARTERIAL 370 2 12 4 1,750 25 9  317 219 203 SUNCREST RD COLLECTOR 551 1 12 4 1,700 45 2  318 220 219 SUNCREST RD COLLECTOR 434 1 12 4 1,700 45 1  319 221 247 SUNCREST RD COLLECTOR 1,127 1 12 4 1,350 30 1  320 221 292 CLEARVIEW DR COLLECTOR 235 1 12 4 1,125 25 1    City of Ashland H‐12 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Link #  Up‐  Stream  Node  Down‐  Stream  Node Roadway Name Roadway Type  Length  (ft.)  No.  of  Lanes  Lane  Width  (ft.)  Shoulder  Width  (ft.)  Saturation  Flow  Rate  (pcphpl)  Free  Flow  Speed  (mph)  Grid  Number  321 222 221 SUNCREST RD COLLECTOR 791 1 12 4 1,125 25 1  322 223 226 N MOUNTAIN AVE COLLECTOR 926 1 12 4 1,125 25 8  323 223 260 N MOUNTAIN AVE COLLECTOR 556 1 12 4 1,700 40 8  324 224 225 N MOUNTAIN AVE COLLECTOR 757 1 12 4 1,125 25 7  325 225 144 N MOUNTAIN AVE COLLECTOR 900 1 12 4 1,125 25 7  326 226 223 N MOUNTAIN AVE COLLECTOR 926 1 12 4 1,125 25 8  327 226 224 N MOUNTAIN AVE COLLECTOR 1,179 1 12 4 1,125 25 7  328 227 46 LITHIA WAY MINOR ARTERIAL 232 2 12 4 1,900 20 9  329 227 229 PIONEER ST COLLECTOR 260 1 12 4 1,750 20 9  330 228 134 OR‐99 COLLECTOR 433 3 12 4 1,750 30 9  331 229 218 OR‐99 MINOR ARTERIAL 486 2 12 4 1,750 25 9  332 229 227 PIONEER ST COLLECTOR 260 1 12 4 1,750 20 9  333 230 73 N VALLEY VIEW RD COLLECTOR 1,138 1 12 4 1,575 35 4  334 231 232 E MAIN ST COLLECTOR 237 1 12 4 1,350 30 3  335 232 116 E MAIN ST COLLECTOR 247 1 12 4 675 15 3  336 233 41 OR‐99 COLLECTOR 812 2 12 4 1,750 30 9  337 233 42 OR‐99 COLLECTOR 480 2 12 4 1,750 30 9  338 234 41 S MOUNTAIN AVE LOCAL ROADWAY 1,338 1 12 4 1,750 25 10  339 235 233 BEACH ST LOCAL ROADWAY 1,795 1 12 4 1,750 25 9  340 235 234 ASHLAND ST LOCAL ROADWAY 727 1 12 4 1,125 25 9  341 236 79  DEAD INDIAN MEMORIAL  RD LOCAL ROADWAY 344 1 12 4 900 20 14  342 237 42 OR‐99 COLLECTOR 681 2 12 4 1,900 30 9  343 237 240 OR‐99 COLLECTOR 462 2 12 4 1,750 30 9  344 238 45 LITHIA WAY MINOR ARTERIAL 360 2 12 4 1,900 20 9  345 238 228 2ND ST COLLECTOR 373 1 12 0 1,750 30 9  346 239 238 N 2ND AVE LOCAL ROADWAY 509 1 12 4 1,750 25 9  347 239 256 B ST LOCAL ROADWAY 1,023 1 12 2 1,125 25 9  348 240 43 OR‐99 COLLECTOR 677 2 12 4 1,900 30 9  349 240 237 OR‐99 COLLECTOR 462 2 12 4 1,900 30 9  350 241 48 OR‐99 COLLECTOR 355 1 12 4 1,125 25 7  351 242 59 OR‐99 COLLECTOR 1,134 2 12 4 1,750 50 5    City of Ashland H‐13 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Link #  Up‐  Stream  Node  Down‐  Stream  Node Roadway Name Roadway Type  Length  (ft.)  No.  of  Lanes  Lane  Width  (ft.)  Shoulder  Width  (ft.)  Saturation  Flow  Rate  (pcphpl)  Free  Flow  Speed  (mph)  Grid  Number  352 243 242 JACKSON RD LOCAL ROADWAY 192 1 12 4 900 20 5  353 244 60 OR‐99 COLLECTOR 1,680 1 12 8 1,700 55 4  354 245 64 OR‐99 MINOR ARTERIAL 447 2 12 4 1,750 45 4  355 246 209 FOSS RD LOCAL ROADWAY 4,780 1 12 4 1,700 40 3  356 247 220 SUNCREST RD COLLECTOR 1,348 1 12 4 1,700 45 1  357 248 90 W VALLEY VIEW RD LOCAL ROADWAY 738 1 12 4 1,350 30 4  358 249 98 WIGHTMAN ST COLLECTOR 528 1 12 0 1,125 25 10  359 249 125 WIGHTMAN ST COLLECTOR 1,090 1 12 0 1,125 25 10  360 250 129 GRANITE ST LOCAL ROADWAY 1,160 1 12 4 1,125 25 9  361 251 253 OR‐99 MINOR ARTERIAL 137 2 12 4 1,900 25 9  362 252 255 WATER ST LOCAL ROADWAY 313 1 10 2 900 20 9  363 252 256 B ST LOCAL ROADWAY 351 1 12 2 1,125 25 9  364 253 229 OR‐99 MINOR ARTERIAL 654 2 12 4 1,750 25 9  365 254 47 LITHIA WAY LOCAL ROADWAY 486 2 12 4 1,900 20 9  366 254 255 LITHIA WAY  LOCAL ROADWAY 139 1 12 2 900 15 9  367 255 253 WATER ST LOCAL ROADWAY 129 1 10 2 900 20 9  368 256 46 OAK ST LOCAL ROADWAY 344 1 12 4 1,125 25 9  369 256 252 B ST LOCAL ROADWAY 352 1 12 2 1,125 25 9  370 256 305 OAK ST LOCAL ROADWAY 628 1 12 4 1,125 25 7  371 257 260 N MOUNTAIN AVE COLLECTOR 1,136 1 12 4 1,700 40 7  372 257 3112 EAGLE MILL RD COLLECTOR 335 1 12 4 1,350 30 5  373 258 259 E NEVADA ST COLLECTOR 3,363 1 12 4 1,700 40 8  374 259 223 E NEVADA ST COLLECTOR 618 1 12 4 1,700 40 8  375 260 223 N MOUNTAIN AVE COLLECTOR 556 1 12 4 1,700 40 8  376 260 257 N MOUNTAIN AVE COLLECTOR 1,136 1 12 4 1,700 40 7  377 261 50 GLENN ST LOCAL ROADWAY 575 1 12 4 900 20 7  378 262 236  DEAD INDIAN MEMORIAL  RD LOCAL ROADWAY 2,402 1 12 4 1,700 50 12  379 263 303 TOLMAN CREEK ROAD COLLECTOR 1,830 1 12 4 1,750 30 13  380 264 114 OR‐99 COLLECTOR 551 1 12 4 1,700 40 13  381 265 264 PARK ST LOCAL ROADWAY 2,181 1 12 4 1,125 25 13  382 266 265 CRESTVIEW DR LOCAL ROADWAY 643 1 12 4 1,125 25 13    City of Ashland H‐14 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Link #  Up‐  Stream  Node  Down‐  Stream  Node Roadway Name Roadway Type  Length  (ft.)  No.  of  Lanes  Lane  Width  (ft.)  Shoulder  Width  (ft.)  Saturation  Flow  Rate  (pcphpl)  Free  Flow  Speed  (mph)  Grid  Number  383 266 267 HILLVIEW DR LOCAL ROADWAY 1,009 1 12 4 1,125 25 13  384 267 111 HILLVIEW DR LOCAL ROADWAY 1,613 1 12 4 1,125 25 13  385 268 133 GUTHRIE ST LOCAL ROADWAY 1,316 1 12 4 1,125 25 9  386 268 135 ASHLAND ST LOCAL ROADWAY 2,007 1 12 4 1,125 25 9  387 269 234 ASHLAND ST LOCAL ROADWAY 271 1 12 4 1,125 25 10  388 270 269 ELKADER ST LOCAL ROADWAY 1,314 1 12 4 1,125 25 10  389 271 270 ELKADER ST LOCAL ROADWAY 1,412 1 12 4 1,125 25 13  390 274 214 PINECREST LOCAL ROADWAY 926 1 12 4 900 20 13  391 275 264 OR‐99 COLLECTOR 600 1 12 4 1,700 40 13  392 275 315 NORMAL AVE LOCAL ROADWAY 952 1 12 4 1,125 25 13  393 276 96 8TH ST LOCAL ROADWAY 655 1 12 4 1,125 25 9  394 277 239 B ST LOCAL ROADWAY 352 1 12 4 1,125 25 9  395 277 298 B ST LOCAL ROADWAY 732 1 12 4 1,125 25 9  396 278 279 E NEVADA ST LOCAL ROADWAY 723 1 12 4 1,125 25 6  397 279 280 E NEVADA ST LOCAL ROADWAY 228 1 12 4 1,125 25 6  398 280 281 E NEVADA ST LOCAL ROADWAY 603 1 12 4 1,125 25 7  399 281 282 E NEVADA ST LOCAL ROADWAY 744 1 12 4 1,125 25 7  400 282 161 N LAUREL ST LOCAL ROADWAY 1,946 1 12 4 1,125 25 7  401 282 167 E NEVADA ST LOCAL ROADWAY 849 1 12 4 1,125 25 7  402 283 149 WILMER ST LOCAL ROADWAY 617 1 12 4 1,125 25 6  403 283 288 WALNUT ST LOCAL ROADWAY 1,324 1 12 4 1,125 25 6  404 284 283 WILMER ST LOCAL ROADWAY 737 1 12 4 1,125 25 6  405 285 284 WILMER ST LOCAL ROADWAY 629 1 12 4 1,125 25 6  406 286 151 SHERIDAN ST LOCAL ROADWAY 92 1 11 0 1,125 25 6  407 286 152 MONTE VISTA DR LOCAL ROADWAY 98 1 11 0 1,125 25 6  408 287 288 WILEY ST LOCAL ROADWAY 387 1 12 4 1,125 25 6  409 288 151 WALNUT ST LOCAL ROADWAY 797 1 12 4 1,125 25 6  410 289 150 SCENIC DR LOCAL ROADWAY 657 1 12 4 1,125 25 6  411 290 284 WRIGHTS CREEK DR LOCAL ROADWAY 638 1 12 4 1,125 25 6  413 292 221 CLEARVIEW DR COLLECTOR 235 1 12 4 1,125 25 1  414 292 293 CLEARVIEW DR COLLECTOR 231 1 12 4 1,125 25 1  415 293 292 CLEARVIEW DR COLLECTOR 231 1 12 4 1,125 25 1    City of Ashland H‐15 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Link #  Up‐  Stream  Node  Down‐  Stream  Node Roadway Name Roadway Type  Length  (ft.)  No.  of  Lanes  Lane  Width  (ft.)  Shoulder  Width  (ft.)  Saturation  Flow  Rate  (pcphpl)  Free  Flow  Speed  (mph)  Grid  Number  416 293 294 CLEARVIEW DR COLLECTOR 406 1 12 4 1,125 25 1  417 294 66 OR‐99 MINOR ARTERIAL 729 2 12 4 1,900 45 1  418 294 293 CLEARVIEW DR COLLECTOR 406 1 12 4 1,125 25 1  419 295 229 PIONEER RD LOCAL ROADWAY 346 1 12 0 1,750 30 9  420 296 228 2ND ST COLLECTOR 372 1 12 0 1,750 30 9  421 297 248 DRIVEWAY LOCAL ROADWAY 225 1 12 4 1,750 25 4  422 298 276 B ST LOCAL ROADWAY 1,123 1 12 4 1,125 25 9  423 298 277 B ST LOCAL ROADWAY 732 1 12 4 1,125 25 9  424 299 298 5TH ST LOCAL ROADWAY 467 1 12 4 1,125 25 9  425 300 189 TALENT AVE LOCAL ROADWAY 730 1 12 4 1,350 30 1  426 300 206 TALENT AVE LOCAL ROADWAY 503 1 12 4 1,350 30 3  427 300 294 NEW ST LOCAL ROADWAY 483 1 12 4 1,125 25 1  428 301 300 SUNNY ST LOCAL ROADWAY 441 1 12 4 1,125 25 1  429 302 77 E MAIN ST COLLECTOR 83 1 12 4 1,125 25 12  430 303 40 TOLMAN CREEK ROAD COLLECTOR 2,918 1 12 4 1,750 30 13  431 304 298 5TH ST LOCAL ROADWAY 455 1 12 4 1,125 25 9  432 305 145 OAK ST LOCAL ROADWAY 733 1 12 4 1,125 25 7  433 306 9 TOLMAN CREEK ROAD COLLECTOR 653 1 12 4 1,750 30 11  434 306 320 TOLMAN CREEK ROAD COLLECTOR 1,098 1 12 4 1,350 30 11  435 307 9 TOLMAN CREEK ROAD COLLECTOR 1,160 1 12 4 1,750 30 11  436 307 308 TOLMAN CREEK ROAD COLLECTOR 1,137 1 12 4 1,350 30 13  437 308 40 TOLMAN CREEK ROAD COLLECTOR 1,357 1 12 4 1,750 30 13  438 308 307 TOLMAN CREEK ROAD COLLECTOR 1,137 1 12 4 1,350 30 13  439 309 308 DIANNE ST LOCAL ROADWAY 656 1 12 0 1,125 25 13  440 310 307 TAKELMA WAY LOCAL ROADWAY 643 1 12 0 1,125 25 13  441 311 114 FAITH AVE LOCAL ROADWAY 676 1 12 4 1,125 25 13  442 311 312 FAITH AVE LOCAL ROADWAY 605 1 12 4 1,125 25 13  443 312 113 FAITH AVE LOCAL ROADWAY 941 1 12 4 1,750 25 11  444 312 311 FAITH AVE LOCAL ROADWAY 605 1 12 4 1,125 25 13  445 313 312 MAE ST LOCAL ROADWAY 311 1 12 1 1,125 25 13  446 314 311 WINE ST LOCAL ROADWAY 337 1 12 1 1,125 25 13  447 315 110 NORMAL AVE LOCAL ROADWAY 640 1 12 4 1,125 25 10    City of Ashland H‐16 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Link #  Up‐  Stream  Node  Down‐  Stream  Node Roadway Name Roadway Type  Length  (ft.)  No.  of  Lanes  Lane  Width  (ft.)  Shoulder  Width  (ft.)  Saturation  Flow  Rate  (pcphpl)  Free  Flow  Speed  (mph)  Grid  Number  448 315 275 NORMAL AVE LOCAL ROADWAY 952 1 12 4 1,125 25 13  449 316 315 FREMONT ST LOCAL ROADWAY 598 1 12 0 1,125 25 10  450 317 40 OR‐99 COLLECTOR 1,577 1 12 4 1,700 40 13  451 318 317 CLAY ST COLLECTOR 2,200 1 12 1 1,125 25 13  452 319 317 CLAY ST COLLECTOR 1,871 1 12 1 1,125 25 13  453 320 104 TOLMAN CREEK ROAD COLLECTOR 628 1 12 4 1,350 30 11  454 320 306 TOLMAN CREEK ROAD COLLECTOR 1,098 1 12 4 1,350 30 11  455 321 320 ABBOTT AVE LOCAL ROADWAY 654 1 12 0 1,125 25 11  456 322 102 E MAIN ST COLLECTOR 645 1 12 4 1,350 30 11  457 322 325 CLAY ST COLLECTOR 853 1 12 1 1,125 25 11  458 323 9 OR‐66 MINOR ARTERIAL 1,299 2 12 4 1,750 35 11  459 323 324 CLAY ST COLLECTOR 755 1 12 1 1,125 25 11  460 324 323 CLAY ST COLLECTOR 755 1 12 1 1,125 25 11  461 324 325 CLAY ST COLLECTOR 1,077 1 12 1 1,125 25 11  462 325 322 CLAY ST COLLECTOR 853 1 12 1 1,125 25 11  463 325 324 CLAY ST COLLECTOR 1,077 1 12 1 1,125 25 11  464 326 324 VILLARD ST LOCAL ROADWAY 423 1 12 1 1,125 25 11  465 327 325 CREEK DR LOCAL ROADWAY 849 1 12 1 1,125 25 11  466 328 123 INDIANA ST COLLECTOR 311 2 12 0 1,750 30 10  467 329 328 INDIANA ST COLLECTOR 927 1 12 0 1,350 30 10  468 329 3109 OREGON ST LOCAL ROADWAY 1,126 1 12 0 1,350 30 13  469 330 329 INDIANA ST COLLECTOR 947 1 12 0 1,350 30 13  470 331 74 SUTTON PL LOCAL ROADWAY 506 1 12 1 1,350 30 11  471 332 75 ASHLAND ST COLLECTOR 431 1 12 4 1,575 35 12  472 332 77 ASHLAND ST COLLECTOR 163 1 12 4 1,575 35 12  473 333 332 OAK KNOLL DR COLLECTOR 222 1 12 1 1,350 30 12  474 334 333 OAK KNOLL DR COLLECTOR 414 1 12 1 1,350 30 12  475 335 334 OAK KNOLL DR COLLECTOR 447 1 12 1 1,350 30 14  476 336 2 CROWSON RD LOCAL ROADWAY 2,355 1 12 4 1,750 40 14  477 336 115 CROWSON RD LOCAL ROADWAY 890 1 12 4 1,700 40 14  478 337 336 OAK KNOLL DR COLLECTOR 335 1 12 1 1,350 30 14  479 338 337 OAK KNOLL DR COLLECTOR 598 1 12 1 1,350 30 14    City of Ashland H‐17 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Link #  Up‐  Stream  Node  Down‐  Stream  Node Roadway Name Roadway Type  Length  (ft.)  No.  of  Lanes  Lane  Width  (ft.)  Shoulder  Width  (ft.)  Saturation  Flow  Rate  (pcphpl)  Free  Flow  Speed  (mph)  Grid  Number  480 339 41 OR‐99 COLLECTOR 540 2 12 4 1,750 30 10  481 339 123 OR‐99 COLLECTOR 1,611 2 12 4 1,750 30 10  482 340 269 ASHLAND ST LOCAL ROADWAY 173 1 12 4 1,125 25 10  483 340 339 UNIVERSITY WAY LOCAL ROADWAY 1,011 1 12 8 1,350 30 10  484 350 340 ASHLAND ST LOCAL ROADWAY 504 1 12 4 1,125 25 10  627 3109 109 WALKER AVE LOCAL ROADWAY 386 1 12 4 1,750 25 13  628 3110 226 FAIR OAKS AVE LOCAL ROADWAY 990 1 12 4 1,125 25 7  629 3111 170 EAGLE MILL RD COLLECTOR 952 1 12 4 1,700 40 5  630 3112 3111 EAGLE MILL RD COLLECTOR 1,507 1 12 4 1,700 40 5  631 3113 163 SLEEPY HOLLOW COLLECTOR 746 1 12 4 1,350 30 7  632 3114 144 N MOUNTAIN AVE COLLECTOR 803 1 12 4 1,125 25 8  633 3114 3115 N MOUNTAIN AVE COLLECTOR 416 1 12 4 1,125 25 10  634 3115 97 N MOUNTAIN AVE COLLECTOR 1,635 1 12 4 1,750 25 10  635 3115 3114 N MOUNTAIN AVE COLLECTOR 416 1 12 4 1,125 25 10  636 3116 3115 VILLAGE GREEN DR LOCAL ROADWAY 345 1 12 0 1,125 25 10  637 3117 98 WRIGHTMAN ST LOCAL ROADWAY 880 1 12 0 1,125 25 10  639 8002 31 I‐5 FREEWAY 2,852 2 12 8 2,250 70 1  (exit  link) 31 8002 I‐5 FREEWAY 2,852 2 12 8 2,250 70 1  (exit  link) 69 8003 OR‐99 MINOR ARTERIAL 757 1 12 4 1,275 45 1  (exit  link) 95 8005 COLVER RD LOCAL ROADWAY 2,638 1 12 4 900 50 1  (exit  link) 204 8006 PAYNE RD COLLECTOR 957 1 12 2 675 45 2  (exit  link) 13 8001 I‐5 FREEWAY 1446 2 12 4 2250 70 14  (exit  link) 88 8004 GREEN SPRINGS HWY COLLECTOR 1755 1 12 4 1575 35 14    City of Ashland H‐18 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Table H‐2. Nodes in the Link‐Node Analysis Network which are Controlled  Node  X  Coordinate1  (ft)  Y  Coordinate1  (ft)  Control Type Grid Map  Number  1 4301313 220754 Actuated 1  2 4334929 191395 TCP ‐ Actuated 13  7 4333870 196621 Actuated 11  8 4334445 196630 Actuated 11  9 4332741 196678 Actuated 11  40 4332645 193025 Actuated 13  41 4325289 198249 Actuated 10  42 4324223 198980 Stop 9  44 4322650 200221 Actuated 9  46 4321324 201453 Stop 9  47 4320711 201931 Actuated 9  48 4320275 202668 Actuated 7  49 4319856 203690 Stop 7  50 4319685 204310 Stop 6  51 4319451 204738 Actuated 6  54 4317710 206641 Stop 6  59 4314371 210093 Actuated 4  62 4307467 215682 Stop 4  63 4305647 217114 Stop 4  64 4304473 218065 Actuated 4  70 4327269 196853 Actuated 10  72 4314474 212309 Stop 4  73 4314326 213147 Stop 4  74 4335247 196844 Stop 11  77 4336285 196511 Stop 12  82 4338254 193425 Stop 14  90 4305235 219402 Stop 4  91 4306405 218950 Stop 4  92 4295153 220541 Stop 1  96 4324317 200079 Stop 9  97 4325348 199997 Actuated 10  98 4327091 200301 Stop 10  103 4332375 199426 Stop 11  108 4328242 196819 Actuated 10  109 4328228 196173 Actuated 10  110 4329620 196777 Stop 10  111 4329385 195330 Stop 13  112 4328320 200251 Stop 10  113 4330646 196733 TCP ‐ Actuated 11  114 4330526 194514 Stop 13  117 4303793 217512 Stop 3    City of Ashland H‐19 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Node  X  Coordinate1  (ft)  Y  Coordinate1  (ft)  Control Type Grid Map  Number  121 4320822 203570 Stop 7  122 4321376 203270 Stop 7  123 4327034 196991 Actuated 10  124 4328292 198660 Stop 10  125 4327030 198684 Stop 10  127 4325307 198700 Stop 10  134 4322397 200292 Actuated 9  135 4324166 196894 Stop 9  137 4323514 198258 Stop 9  138 4323551 198771 Stop 9  141 4324202 198729 Stop 9  142 4324185 198238 Stop 9  143 4322308 198801 Stop 9  144 4324941 202706 Stop 7  145 4322258 202839 Stop 7  148 4322498 200523 Stop 9  150 4318988 203662 Stop 6  151 4317750 205815 Stop 6  154 4317409 206362 Stop 6  159 4318812 205813 Stop 6  161 4321105 204189 Stop 7  163 4322693 204513 Stop 7  164 4322781 206072 Stop 7  170 4322507 207881 Stop 5  179 4314468 210823 Stop 4  185 4306733 214646 Stop 4  186 4305027 216389 Stop 4  190 4301153 220641 Stop 1  193 4303977 219436 Stop 4  203 4304283 223182 Stop 2  206 4302002 219362 Stop 3  214 4328167 193764 Stop 13  215 4319896 202412 Stop 7  221 4302431 220629 Stop 1  223 4325433 206361 Stop 8  226 4325010 205537 Stop 7  227 4321511 201317 Actuated 9  228 4322062 200567 Actuated 9  229 4321384 201090 Actuated 9  233 4324616 198704 Actuated 9  234 4325249 196912 Stop 10  235 4324522 196912 Stop 9  237 4323664 199368 Stop 9    City of Ashland H‐20 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0  Node  X  Coordinate1  (ft)  Y  Coordinate1  (ft)  Control Type Grid Map  Number  238 4322233 200898 Actuated 9  239 4322383 201385 Stop 9  240 4323291 199640 Actuated 9  242 4315261 209390 Actuated 5  248 4304498 219429 Actuated 4  249 4327086 199773 Stop 10  250 4320146 200298 Stop 9  252 4321133 201952 Stop 7  253 4320931 201558 Stop 9  255 4320995 201671 Yield 9  256 4321438 201777 Stop 9  261 4320194 204576 Stop 7  264 4330067 194818 Stop 13  267 4329392 193717 Stop 13  275 4329592 195185 Stop 13  284 4317006 203715 Stop 6  288 4317739 205018 Stop 6  294 4302273 219862 Stop 1  298 4323410 201040 Stop 9  300 4301792 219819 Stop 1  307 4332710 195518 Stop 13  308 4332696 194381 Stop 13  311 4330566 195189 Stop 13  312 4330585 195794 Stop 13  315 4329601 196137 Stop 10  317 4331347 193922 Stop 13  320 4332790 198429 Stop 11  322 4331493 199401 Stop 11  323 4331443 196716 Stop 11  324 4331448 197471 Stop 11  325 4331480 198548 Stop 11  332 4336150 196604 Stop 12  336 4336786 192844 Stop 14  339 4325709 197909 Stop 10  3109 4328229 195787 Stop 13  3115 4325406 201631 Stop 10  1Coordinates are in the North American Datum of 1983 Oregon South State Plane    City of Ashland H‐21 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure H‐1.  Evacuation Time Estimate Study Link‐Node Analysis Network    City of Ashland H‐22 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure H‐2.  Link‐Node Analysis Network – Grid 1    City of Ashland H‐23 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure H‐3. Link‐Node Analysis Network – Grid 2    City of Ashland H‐24 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure H‐4. Link‐Node Analysis Network – Grid 3    City of Ashland H‐25 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure H‐5. Link‐Node Analysis Network – Grid 4    City of Ashland H‐26 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure H‐6. Link‐Node Analysis Network – Grid 5    City of Ashland H‐27 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure H‐7. Link‐Node Analysis Network – Grid 6    City of Ashland H‐28 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure H‐8. Link‐Node Analysis Network – Grid 7    City of Ashland H‐29 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure H‐9. Link‐Node Analysis Network – Grid 8    City of Ashland H‐30 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure H‐10. Link‐Node Analysis Network – Grid 9    City of Ashland H‐31 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure H‐11. Link‐Node Analysis Network – Grid 10    City of Ashland H‐32 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure H‐12. Link‐Node Analysis Network – Grid 11    City of Ashland H‐33 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure H‐13. Link‐Node Analysis Network – Grid 12    City of Ashland H‐34 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure H‐14. Link‐Node Analysis Network – Grid 13    City of Ashland H‐35 KLD Engineering, P.C.  Evacuation Time Estimate Study Rev. 0    Figure H‐15. Link‐Node Analysis Network – Grid 14  APPENDIX J  Evacuation Sensitivity Studies  “What‐if” Scenarios   City of Ashland J‐1 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  J. EVACUATION SENSITIVITY STUDIES  This appendix presents the results of a series of sensitivity analyses, or “what‐if” analyses. These  analyses are designed to identify the sensitivity of the Evacuation Time Estimate (ETE) to changes  in some base evacuation conditions.  J.1 Effect of Changes in Trip Generation Times  A sensitivity study was performed to determine whether changes in the estimated trip generation  (mobilization) time influence the ETE for an evacuation of all EMZs (Region R18). Specifically, if  the tail of the mobilization distribution were truncated (i.e., if those who responded most slowly  to the evacuation order, could be persuaded to respond much more rapidly) or if the tail were  elongated (i.e., spreading out the departure of evacuees to limit the demand during peak times),  how would the ETE be affected? These “what if” scenarios were considered for a fall, midweek,  midday scenario (Scenario 4). Results are tabulated in Table J‐1.  Trip Generation times of 3 hours,  4 hours (Base) and 5 hours were tested.  As seen shown in Table J‐1, if evacuees mobilize in one less hour the 90th and 100th percentile  ETEs is reduced by 5 minutes and 20 minutes, respectively.  If evacuees were to mobilize in one  hour more, the 90th percentile ETE remains the same while the 100th percentile ETE  increases by  one hour.  As discussed in Section 7, congestion within the ETE exists within the EMZs for just  over 3 hours and 30 minutes.  As such, if the time to mobilize is less than 3 hours and 40 minutes,  congestion dictates the 100th percentile ETE.  If the time to mobilize is longer than 3 hours and  40 minutes, the 100th percentile is dictated by the trip generation time.  J.2 Effect of Changes in the Number of People in the Shadow Region Who Relocate  A sensitivity study was conducted to determine the effect on ETE due to changes in the  percentage of people who decide to relocate from the Shadow, see Figure 7‐1.  The case  considered was Scenario 4, Region R18; a fall, midweek, midday evacuation of the entire EMZ.  The movement of people in the Shadow Region has the potential to impede vehicles evacuating  from an Evacuation Region.  Refer to Sections 3.2 and 7.1 for additional information on  population within the Shadow Region.  Shadow evacuation percentages of 0 and 100 were tested  to bound the analysis.  Table J‐2 presents the ETE for each of the cases considered. The results show that decreasing the  shadow population to 0 percent reduces the 90th percentile ETE by 5 minutes while the 100th  percentile ETE remains the same.  A full evacuation (100%) of the Shadow Region increases the ETE  by 10 minutes for the 90th percentile and 5 minutes for the 100th percentile – not a significant  change.   The Shadow Region was defined as the area beyond the EMZ including the City of Talent to the  north, Emigrant Lake to the south and the surrounding ridgelines.  All of these areas are sparsely  populated areas.  Therefore, changes in the percentage of people that decide to voluntarily evacuate  beyond the city limits will have little to no impact on an evacuation of the City of Ashland.     City of Ashland J‐2 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  J.3 Effect of Reducing the Evacuation Demand – One Vehicle per Household  The relationship between supply and demand is very important in computing evacuation time.  Evacuation travel supply is the ability of the roadway network to serve the traffic demand  (number of evacuating vehicles) during an emergency. In this context, when the demand exceeds  the supply (available capacity), congestion occurs causing delay and prolonging the evacuation.  The roadway capacity is often difficult to increase as its expensive and difficult to widen existing  infrastructure or build additional roadways. Thus, it is good practice to attempt reduce the  evacuating traffic demand such that demand does not exceed capacity. The demographic survey  of the EMZs indicated residents would use approximately 1.43 vehicles per household (HH)  during an evacuation (see Appendix F). A sensitivity study was conducted to determine the effect  on ETE when the evacuating vehicles per household was reduced to one (a 43% reduction in  evacuating vehicles).   As seen in Table J‐3, during the base case scenario, there are 13,666 residential vehicles  evacuating from the EMZ (see Table 3‐4). When the number of evacuation vehicles per household  is reduced to one, the number of evacuating residential vehicles is reduced to 9,560. The case  considered was Scenario 3, Region R18; a fall, midweek, midday scenario and an evacuation of  all EMZs. When the evacuating traffic demand is reduced by approximately 40%, the 90th  percentile ETE is reduced by 30 minutes – a significant change – and the 100th percentile ETE is  not affected.  The 100th percentile ETE is still dictated by congestion.  Efforts should be made to  inform the general population that reducing the number of vehicles each household uses during  an evacuation can greatly reduce the amount of time needed to evacuate the area.   J.4 Effect of Direction of Wildfire Approach  Depending on the origin and prevailing winds, a wildfire can block one or more egress routes out  of the EMZ.  Alternatively, emergency officials could decide to reserve egress routes for first  responders and emergency vehicles and only use I‐5 northbound or southbound for evacuees.  Two cases were run to simulate various roadway cases:    1. A scenario wherein a wildfire is to the south of the city and all traffic is forced northbound,  and   2. A scenario wherein a wildfire is to the north of the city and all traffic is forced southbound.   These two cases were run for Scenario 4, Region R18; a fall, midweek, midday scenario for an  evacuation of all EMZs.  The results are shown in Table J‐4.  J.4.1 A Wildfire to the North wherein Traffic is Forced Southbound  This case was run to represent a wildfire event that originates to the north‐west of the Ashland  City limits and evacuation to the north along I‐5 and OR‐99 are not feasible.  As shown in Table  J‐4, when EMZ evacuees are unable to evacuate northbound due to the proximity of the  approaching wildfire, the 90th percentile ETE and 100th percentile ETE increase by 3 hours and 10  minutes and 3 hours and 25 minutes, respectively.     City of Ashland J‐3 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  Under these circumstances, vehicles are forced to reroute to I‐5 southbound, OR‐99 southbound  (which eventually merges with I‐5), and OR‐66 southbound.  These roadways, or ramps giving  access to these roadways, are oversaturated.  As a result, congestion within the EMZ worsens,  delays increase, and ETE increases when compared to the base case.  J.4.2 A Wildfire to the South wherein Traffic is Forced Northbound  This case was run to represent a wildfire event that originates south of the City limits and  evacuation to the south along I‐5, OR‐99 and OR‐66 are not feasible.  Table J‐4 shows the 90th  and 100th percentile ETE results when EMZ evacuees are unable to evacuate southbound due to  the proximity of the approaching wildfire.  The 90th percentile ETE increases by 2 hours and 25  minutes and the 100th percentile ETE increases by 2 hours and 35 minutes for this scenario.    Under these circumstances, vehicles are forced to reroute to OR‐99 northbound and I‐5  northbound.  OR‐99 is oversaturated and the ramps that give access to I‐5 are oversaturated.  As  a result, congestion within the EMZ worsens, delays increase, and ETE increases when compared  to the base case.  J.4.3 Patterns of Traffic Congestion due to Wildfire Approach  Figure J‐1 through Figure J‐8 show the patterns of congestion for the wildfire cases discussed  above and the base case at each hour into the evacuation up to 7 hours and 25 minutes after the  advisory to evacuate. Case 1 is the case wherein there is a wildfire to the north and traffic is  forced to the south.  Case 2 is the case wherein there is a wildfire to the south and traffic is forced  to the north.  Case 3 is the base case wherein traffic can choose to go north or south.    At 1 hour into the evacuation, as shown in Figure J‐1, all cases show peak congestion in the EMZs.   Congestion along OR‐99, OR‐66, and E Main St is severe in all cases.  When compared to Case 3,  Downtown Ashland (EMZs 2, 8, and 10) are less congested because those vehicles are now forced  south and cause the south of the EMZ (EMZs 3, 7, 4, and 6) to be more congested for Case 1.    When comparing the Case 3 to Case 2, congestion patterns within the EMZ are similar, except for  worse congestion in EMZ 8 and 9 as vehicles reroute along N Mountain Rd to gain access to Oak  St to evacuate the area northbound.  Congestion along Crowson Rd and OR‐99 southbound and  OR‐66 southbound is less in the southern wildfire case as vehicles are not permitted to evacuate  in that direction.  Figure J‐2 compares the patterns of congestion at 2 hours into the evacuation for all wildfire  cases.  When comparing Case 1 to Case 2, congestion in EMZs 2, 8, 9, and 10 is less, but congestion  in EMZs 3, 4, 5, 6, and 7 is worse.  The vehicles from the northern EMZs are getting stuck in the  central and southern EMZs as OR‐99, OR‐66, and the I‐5 on ramps process all of the vehicles that  are attempting to use them to evacuate.    Alternatively, comparing Case 2 to Case 3, congestion patterns are similar, but congestion in  EMZs 8 and 9 are worse due to traffic along N Mountain Rd, and congestion in EMZ 5 is better  since vehicles cannot evacuate in that direction.    City of Ashland J‐4 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  Figure J‐3 compares congestion patterns at 3 hours after the advisory to evacuate. In this figure,  the impacts of the loss of the northbound evacuation routes in Case 1 and the southbound  evacuation routes in Case 2 become obvious. In Cases 1 and 2, OR‐99 remains more congested ‐  the direction of congestion is dependent on the wildfire case – than in Case 3.  EMZ 3 is more  congested in Cases 1 and 2 than Case 3.  When comparing Case 1 to Case 3, EMZs 1, 2, 9, and 10  are mostly clear of congestion. All other EMZs, however are more congested in Case 1 than Case  3.  Looking at Case 2, congestion within the EMZ is mostly equally dispersed as vehicles attempt  to access the only I‐5 ramp within the EMZ (along Ashland St/OR‐66) and OR‐99 northbound.    Figure J‐4 shows the pattens of congestion at 4 hours after the advisory to evacuate for all wildfire  cases.  At this time, Case 3 is completely clear of congestion.  Cases 1 and 2 continue to show  severe congestion within the EMZ.  OR‐99 and OR‐66/Ashland St to access the I‐5 on ramp remain  at LOS F.  Congestion for Case 1 is consolidated to central and southern Ashland, while congestion  for Case 2 is dispersed across nearly all EMZs.    When comparing the patterns of congestion at 5 hours into the evacuation for all closure cases,  shown in Figure J‐5, congestion only occurs on OR‐99 and local roadways that intersect OR‐99 for  Case 1.  For Case 2, severe congestion remains on the majority of OR‐99 northbound and OR‐66  east and westbound.  Oak St continues to exhibit congested conditions as well, as vehicles  attempt to find alternative routes to evacuate the area.  At 6 hours into the evacuation, as shown in Figure J‐6, congestion has dissipated in both Case 1  and Case 2, but still remains along OR‐99 in Case 1 and in EMZ 6 in Case 2.    Figure J‐7 shows the patterns of congestion at 7 hours after the advisory to evacuate.  All  congestion in Case 2 has cleared at this time as all evacuees cleared the area at 6 hours and 35  minutes after the advisory to evacuate (see Table J‐4).  Congestion remains along OR‐99  southbound in Case 1.  Figure J‐8 shows the last remnants of congestion in Case 1 along OR‐99 southbound and Crowson  Rd at 7 hours and 20 minutes after the advisory to evacuate.  All congestion clears (and all  vehicles successfully evacuate the area) 5 minutes later for this case.    J.5 Additional “What‐if” Scenarios  Local officials from the City of Ashland requested three additional “what‐if” scenarios looking  into the potential impacts to evacuation of the addition of the bridge over Bear Creek connecting  E Nevada St, additional access to I‐5 via Freeway ramps on N Mountain Ave and if a combination  of both roadway improvements.  Figure J‐9 shows the location of the bridge and on ramps.  Table J‐5 represents the 90th and 100th percentile ETEs for all three cases.  The addition of the E  Nevada St bridge over Bear Creak decreases the 90th percentile ETE by 10 minutes.  Adding on  ramps to I‐5 near N Mountain Ave also decreases the 90th percentile ETE by 10 minutes.  Adding  both the bridge and the I‐5 on ramps reduced the 90th percentile ETE by 15 minutes.  The 100th  percentile ETE remained unchanged for all cases since it is dictated by the time needed to  mobilize, and in all cases, the trip generation time is 4 hours.      City of Ashland J‐5 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0        Table J‐1.  Evacuation Time Estimates for Trip Generation Sensitivity Study  Trip Generation Time   Evacuation Time Estimates for All EMZs  90th Percentile 100th Percentile  3 Hours 3:05 3:40  4 Hours (Base) 3:10 4:00  5 Hours 3:10 5:00    Table J‐2.  Evacuation Time Estimates for Shadow Sensitivity Study  Percent Shadow Evacuation  Evacuating Shadow3   Evacuation Time Estimate for All EMZs  90th Percentile 100th Percentile  0 0 3:05 4:00  6 (Base) 451 3:10 4:00  100 6,490 3:20 4:10          3 The Evacuating Shadow Vehicles, in Table J-2, represent the residents who will spontaneously decide to relocate during the evacuation. The basis, for the base values shown, is a 6% relocation of shadow residents. See Section 6 for further discussion.    City of Ashland J‐6 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0  Table J‐3.  Evacuation Time Estimates for Reduction in Demand   Case Evacuating Resident  Vehicles   Evacuation Time Estimates for All EMZs  90th Percentile 100th Percentile  One Vehicle per HH 9,560 2:40 4:00  Base Case  (1.43 Evacuating Vehicles per HH) 13,666 3:10 4:00          Table J‐4.  Evacuation Time Estimates for Direction of Wildfire Approach  Case  Evacuation Time Estimates for All EMZs  90th Percentile ETE 100th Percentile  Base Case 3:10 4:00  Wildfire to the North  (Northbound Roadways Closed –  Traffic forced Southbound)  6:20 7:25  Wildfire to the South  (Southbound Roadways Closed –  Traffic forced Northbound)  5:35 6:35          City of Ashland J‐7 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure J‐1.  Wildfire Approach Congestion Pattern Comparison at 1 Hour after the Advisory to Evacuate    City of Ashland J‐8 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure J‐2. Wildfire Approach Congestion Pattern Comparison at 2 Hours after the Advisory to Evacuate    City of Ashland J‐9 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure J‐3. Wildfire Approach Congestion Pattern Comparison at 3 Hours after the Advisory to Evacuate    City of Ashland J‐10 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure J‐4. Wildfire Approach Congestion Pattern Comparison at 4 Hours after the Advisory to Evacuate    City of Ashland J‐11 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure J‐5. Wildfire Approach Congestion Pattern Comparison at 5 Hours after the Advisory to Evacuate    City of Ashland J‐12 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0      Figure J‐6. Wildfire Approach Congestion Pattern Comparison at 6 Hours after the Advisory to Evacuate    City of Ashland J‐13 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure J‐7. Wildfire Approach Congestion Pattern Comparison at 7 Hours after the Advisory to Evacuate    City of Ashland J‐14 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure J‐8.  Wildfire Approach Congestion Pattern Comparison at 7 Hours and 20 Minutes after the Advisory to Evacuate    City of Ashland J‐15 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Figure J‐9.  E Nevada St Bridge and I‐5 On Ramps    City of Ashland J‐16 KLD Engineering, P.C.  Wildfire Egress Study Rev. 0    Table J‐5.  Evacuation Time Estimates for Additional “What‐if” Scenarios  Case  Evacuation Time Estimates for All EMZs  90th Percentile ETE 100th Percentile    Base Case 3:10 4:00  E Nevada St over Bear Creek 3:00 4:00  I‐5 Ramps near Nevada St 3:00 4:00  E Nevada St over Bear Creek and I‐5 Ramps 2:55 4:00    G:\pub-wrks\eng\dept-admin\TRANSPORTATION COMMISSION\2021 Staff Memos\April 15, 2021\Packet\15. April 15, 2021 Action Item List.doc Transportation Commission Action Item List A p r i l 1 5 , 2 0 2 1 Action Items: 1. Capital Improvement Plan-Review and Recommendation (2020/21) • Review proposed roadway, pedestrian and bicycle network CIP projects for the 2021-2023 budget biennium • Make recommendation on priorities for 2 and 6-year CIP projects 2. TSP Update (2020-21) • Solicitation documents have been submitted and scored by project team • Scope, schedule and fee documents under review (TC December 2019/January 2020/February 2020) • Professional services contract requires Council approval • Schedule Council approval (April 7, 2020) • TSP Postponed until timing to start project is more appropriate (FY22/23) 3. Main St. Crosswalk truck parking (no change) • Analysis is included in the revitalize downtown Ashland plan and was recently discussed during the kickoff meeting. • The Revitalize Downtown Ashland Transportation Growth and Management grant project has begun that will assess safety and parking in the downtown core. (February 2020) No change- March 2020 • The Revitalize Downtown Ashland Project has been cancelled with the expectation to re-start the project at a more appropriate time in the future (1-2 years). 4. Siskiyou Blvd. and Tolman Creek Intersection Improvements • The Oregon Department of Transportation removed median island and restriped Tolman Creek portion of intersection to allow for better right-hand turning truck movements. G:\pub-wrks\eng\dept-admin\TRANSPORTATION COMMISSION\2021 Staff Memos\April 15, 2021\Packet\15. April 15, 2021 Action Item List.doc • The Oregon Department of Transportation is also looking at curb ramp design changes to the intersection. (February 2020) No change-March 2020 • Reference ODOT Intersection Change Schematic Drawing (September 2020) • Forwarded TC comments to ODOT regarding review of 60% Design (September 2020) • ODOT Provided Advance Plans of intersection redesign (March 2021) 5. 20 is Plenty Subcommittee Work (November 2021 start) • Mark Brouillard is participating in the 20 mph is plenty subcommittee work with the Climate Policy Commission representatives. • Commission endorsed recommendation developed in the 20 is Plenty report discussed at the January 2021 meeting. Next steps include continued discussion of program and associated strategies for public outreach (education, engineering, enforcement, evaluation), inclusion into the TSP update, updating CIP, and holding a formal Council discussion. • 20 Is Plenty programmatic discussion to be scheduled for April 2021. 6. Railroad District Parking Limitations Review • At a future meeting TBD, discuss current parking limitations in railroad district. G:\pub-wrks\eng\dept-admin\TRANSPORTATION COMMISSION\2021 Staff Memos\April 15, 2021\Packet\16. Normal Avenue Traffic Calming Program Phase 1.doc Memo Date: April 8, 2021 From: Scott A. Fleury To: Transportation Commission RE: Normal Avenue Traffic Calming Phase 1 BACKGROUND: Public Works previously received a request/signature petition for the traffic calming program for the section of Normal Avenue between Siskiyou Boulevard and Ashland Street. Normal Avenue is classified as an Avenue Transportation System Plan (TSP) (1998, 2013). The City of Ashland has adopted Street Design standards that define roadway cross sections and anticipated volumes, reference figure 1 below. Currently Normal Avenue has a curb to curb width of 31 feet. Parking is allowed on both side of the road. There is sidewalk on the east side for the full length of the section. A bike lane improvement is defined in the current TSP: Figure 1: Avenue Cross Sections Staff has included the complete speed and volume data collected for the Normal Avenue study and it is attached for reference. The 85% speed (maximum) was 28.1mph with a maximum average daily traffic of 725 vehicles. G:\pub-wrks\eng\dept-admin\TRANSPORTATION COMMISSION\2021 Staff Memos\April 15, 2021\Packet\16. Normal Avenue Traffic Calming Program Phase 1.doc The two accidents along Normal Avenue since 2015 were fixed object crashes, not correctable by traffic calming. Based on the current scoring developing within the program Normal Avenue would generate three (3) total points, with eight (8) required for any phase 2 actions. CONCLUSION: This is item is informational at this time as their will be future discussions about potential changes to the traffic calming program. Staff will work with the Police Department to have the radar trailer placed onsite and perform targeted enforcement as specified for phase 1 of the program.