HomeMy WebLinkAbout2019.07.23 AWAC Agenda attachment r r
1
r / /
I
rr
r r±
rr V Y/,
id ,�. ,... s a, ,r. ,,, 11 r .,,,xr r r„- •,;F� .,"I/;,,,, ,": , ,,,/
I
I ;
I
I �
Im
r
I
n
r
4' r III
r
r
ml li„ I
I
, IIIIII
IrI
I
Iu17Vl r /a/ r
/ L r f
rn r P r, / r I
F r rv,
..rrr:.
1
r
�I
/ r �
�rl
I
I Illr I�
u Ir r
r
W
r
i l/
» I
xon
6✓ I / / , N u, a w, m» �r x
r
Iy°' mull
v� pry III 1r uuw'.
r�r.
w,
I,
I
1 Y"a
uM
I �Ifr r
t
I III.:
r� r,
I llr r
II'I hlu
jjI III
ml�,ral[ I I
/
r
�awral�,w"
/
t?g,., // J '.%/r �....1 �I � � l�l.)f.o� Ifd/f�r r� /'�, � i.. ✓
I 1 r/,I Il. // /,/... :, ,,, „,.. W✓ ,i=,. ,"'EMI
IVV 61
P
6 fi
. M 1 , ,� ,,,; I' l�,✓Y %�"/, r%r ✓ri/ , r,, ,�,- a!r% r.rr fl'„";, i Ik000,. ,✓ m..
I I
r, I'
a ,r 4r,V
err,= r
I ,
µ�
r
1/ �,., p r r.: �:,,� ,,,.il rdw,h(.:,,. V ,,Pr/ ,w .r I�'wdl j ,�•.a�/ ry/..r„ , / f„r/,,./H.ii 9( r
ly� Y I
/
I 0 Mlul 11 y
I
I
,
r I
I r.III
I
�/I�I 1 � i%ar//V r, S!I'i ��,,,,/r// N�d� 'a;. %i✓;f/ ;`(/I/" ✓r/�'"%Hr,/OrrJ�' rrr
/�Ir /+/r�/;,rvu,,d,+mm>/r it,'. ' „�1/ `fay/f r r'�f%/� �/ /fly �fr.!uW✓✓�rwwa/Krtvii�rrNra41'
uu
/1/I� /rr u,, / »� /r„ f✓,r, % (G x/Nod �,% r r Ip i
,.. �.//i/i r. r,/. , r�i' ,,,, / l „r„/✓,/ /".,,,j,,( r.. ,/ r, r%/b rrr,;
r,r '
//// ;
r... ,/,,,,` e�. /,rvf,../� �.✓sr{J, /,..r.,, /:rage..,,, /....,✓,r
/
x "
ryi N
J
/ I I
' r j»rnlV�l
r >
r yr
Ii:ON
ITY
WATER MASTER PLAN UPDATE
K",
III
,�`gN,�d✓�n,,,l ' d i�r uul III it li �'j�,.
� r
I
Y.
I.III�i
I°I I pp1P II
I
I II
'uIIIi uWll,l
t
I' �II I
/ , ,
.......
rr ,.
r
71
I
Mc
i
I
I
I
Ili
uflm! „
o
S
a>
I I
r
I
I'G
I'i I' / rrr rr Q I
/ f �,„„„,>- I r, u I y'..� oi/.. ��� �u/ ° %;. .� y�rmaw.m�� r 'h✓�'40,I�ira�lP„
/ mS ol ml S /
ri
u I
I�
y//'//
�i��'/re,,,,
Y�IIa VNpW I I Ip�RI^ WUW° Q�Qµ W IIII
I
4
IIIIIIIIIIIIIIIIIIIIII
(IIIIII (IIIIII
IIIW
(IIIIII
I I
ICU I
(IIII (IIII III
I
I
I
V u�
P
,Ix.
�Uu9lq
I
IT L E C IIIII Nlllllllllllu IIIIIIIIIIIIIDu Nmlllllllll�llllllllllluS
City of AIowa lh III alrIid Watelrli, Mas oom imoou kilo Plan Update
3
CTION
1 INTRODU
WATER SYSTEM OWNERSHIP AND MANAGEMENT................................................................ 1-1
OVERVIEW OF EXISTING SYSTEM............................................................................................. 1-1
AUTHORIZATION AND PURPOSE.............................................................................................. 1-2
SUMMARY OF WMP CONTENTS.............................................................................................. 1-3
DEFINITION OF TERMS.............................................................................................................1-3
LIST OF ABBREVIATIONS ..........................................................................................................1-5
2, 1 WA-'IrEll, SYSTEM DEISCRIP-'InON
INTRODUCTION........................................................................................................................2-1
WATER SERVICE AREA..............................................................................................................2-1
History..................................................................................................................................2-1
ExistingWater Service Area.................................................................................................2-1
FutureWater Service Area...................................................................................................2-1
Topography..........................................................................................................................2-2
INVENTORY OF EXISTING WATER FACILITIES...........................................................................2-2
PressureZones.....................................................................................................................2-2
SupplyFacilities....................................................................................................................2-4
WaterTreatment.................................................................................................................2-5
WaterSupply........................................................................................................................2-6
PumpStation Facilities.........................................................................................................2-7
StorageFacilities................................................................................................................2-10
Distribution and Transmission System ................... .....2-12
Pressure Reducing and Control Valve Stations..................................................................2-14
Water System Operation and Control/Telemetry and Supervisory Control System.........2-16
III
3 1 LAND USE AND POPULATION..00 00 00 00 00 00 00 0 0 00 00 00 00 00 00 00 111 a 983-nm�,I,
INTRODUCTION........................................................................................................................3-1
COMPATIBILITY WITH OTHER PLANS.......................................................................................3-1
Introduction .........................................................................................................................3-1
Oregon Statewide Planning Goal 14....................................................................................3-1
City of Ashland Comprehensive Plan ...................................................................................3-2
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\WMP TABLE OF CONTENTS.DOCX(6/19/2019 11:34 AM) i 12
'111w,
I T 00000L E C ooi N00000m 000000iom m000io��00000mS
City of AIowa lhlalrW Watelrin Mas oom imnou rpo Plan Update
Jackson County Comprehensive Plan ..................................................................................3-2
LANDUSE.................................................................................................................................3-2
POPULATION............................................................................................................................3-4
HouseholdTrends................................................................................................................3-4
Existing and Future City Population.....................................................................................3-4
WaterSystem Population ....................................................................................................3-6
4, 1 WA rEll, DEMANDS ,,,fle fle fle fle fle fle flal fle fle fle fle fle 08*8*80 0 fle fle fle f8f0*8*8*8 fle 090 fle fle fle fle fam fam one 9 e4lpm3
INTRODUCTION........................................................................................................................4-1
CURRENT POPULATION AND SERVICE CONNECTIONS............................................................4-1
Water Use Classifications.....................................................................................................4-1
Residential Population Served.............................................................................................4-1
EXISTING WATER DEMANDS....................................................................................................4-3
WaterConsumption.............................................................................................................4-3
WaterSupply......................................................................................................................4-10
WaterLoss..........................................................................................................................4-14
PerCapita Demands...........................................................................................................4-14
Demands Per Pressure Zone..............................................................................................4-15
Equivalent Residential Units ..............................................................................................4-16
AverageDaily Demand.......................................................................................................4-20
MaximumDay Demand .....................................................................................................4-20
PeakHour Demand ............................................................................................................4-21
FIRE FLOW DEMAND..............................................................................................................4-21
FUTURE WATER DEMANDS....................................................................................................4-22
Basis for Projecting Demands ...................................................................................east.....4-22
Demand Forecasts and Conservation ................................................................................4-22
FutureERUs........................................................................................................................4-24
5 1 WATER SYSTEM ANALYSIS .......1oin
INTRODUCTION........................................................................................................................5-1
Changes Since Last Water Master Plan................................................................................5-1
General System Challenges..................................................................................................5-1
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\WMP TABLE OF CONTENTS.DOCX(6/19/2019 11:34 AM) ii 12
'111w,
IT llllllllllL E C lllll Nllllllllllm lllllllllllllDlu mllllllloll�llllllllllluS
City of AIowa lhlaioaid Wgym. telrw, Mas oom imoou rpo Plan Update
SUPPLYEVALUATION ...............................................................................................................5-3
SupplyCriteria......................................................................................................................5-3
SupplyAnalysis.....................................................................................................................5-4
New WTP Integration with Existing System............eas000000000sas000soo1000000000000000006060oosas000so*seems@**5-6
SupplyRecommendations .............................................................................................a.....................5-9
STORAGEFACILITIES .......................................................................................................................5-10
StorageCriteria ...............................................................................................................................5-10
StorageAnalysis.................................................................................................................................5-11
StorageRequirements .6666666666666666666666666666600000000000000006660000000066666666 666666666 ease a a a 5-13
GraniteReservoir Replacement..........................................................................................................5-14
Alsing Reservoir Service Area Expansion ...........................................................................................5-15
Storage Recommendations Summary ........................................................................................5-15
PUMP STATION CAPACITY ANALYSIS...... 5-16
PumpStation Analysis Criteria....................................................................................................................5-16
PumpStation Analysis.............................................0......................................................................5-16
Pump Station Recommendations .....................................................................................................5-19
PRESSUREZONES...................................................................................................................................5-20
PressureZone Criteria..........................................................................................................................5-20
PressureZone Analysis.......................................................................................................................5-20
Pressure Zone Recommendations......................................................................................................5-21
DISTRIBUTION AND TRANSMISSION SYSTEM........................................................................5-24
Distribution System Analysis Criteria.................................................................................5-24
HydraulicModel.......................................0....................................................................................5-24
HydraulicAnalysis ................................................................................................5-25
Distribution System Recommendations ............................................................................5-26
Maintenance Recommendations.......................................................................................5-27
TELEMETRY AND SUPERVISORY CONTROL SYSTEM ..............................................................5-27
Evaluation and Recommendations....................................................................................5-27
6 1 CAPITAL I M PROVEM ENT PLAN..****************00 00 00 00 00 00 00 &W Imlmo
INTRODUCTION........................................................................................................................6-1
COSTESTIMATE........................................................................................................................6-1
ConstructionCosts...............................................................................................................6-2
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\WMP TABLE OF CONTENTS.DOCX(6/19/2019 11:34 AM) i i i IR OxI2
11,111,11"IM006 0', .
I TA00000L E C ooi N00000m 000000iom m000io��00000mS
City of AIowa lhlalrW Watelrw, Mas oom imoou rpo Plan Update
Contingencies.......................................................................................................................6-2
Engineering,, Legal,, Administration......................................................................................6-3
SDC Allocation & Development Contributions ....................................................................6-3
PROJECT PRIORITIZATION ........................................................................................................6-3
SCHEDULE OF IMPROVEMENTS...............................................................................................6-3
DESCRIPTION OF IMPROVEMENTS..........................................................................................6-4
Supply Improvements.. *seven was 6-4
Storage Improvements a a a**6-5
Pump Station Improvements ..............................................................6-6
PipeImprovements...............................................0.............................................................................6-6
Operations and Maintenance..............................................................................................................6-8
RecommendedStudies ..............................................................................................................6-9
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\WMP TABLE OF CONTENTS.DOCX(6/19/2019 11:34 AM) iv It 112
1 � INTRODUCTION
11)
UC1111111111111111110N
ooi
to
Water Sys tom iqrn Ownership and Mariager"ner"it
The City of Ashland (City) is a municipal corporation that owns and operates a public water system
that covers its corporate boundaries. A summary of water system data is shown in Table 1-1.
Table 1-1
Water System Ownership Information
U � p
System Classification Community
..................................................................................................... ...........................---------
System Name Ashland Water Department
..................................................................................................... ...........--------- ...................................................................................................................................................................................................................................................................................................................
County Jackson County
......................................................................................................--------------------------------------------------——————-------------------------------
System ID Number 00047
......................................................................................................------------------------------------------------- ..........................................................................................................................................................................................
Address 90 N. Mountain Avenue, Ashland OR 97520
.......................................................................................................................................................................................................................................................................................................................................................................... ................................................................................................................................................................................................................................................................................................Contact Mr. Greg Hunter., Water Treatment Plant Supervisor
..................................................................................................... --------------- ...........................................................................................................................................................................................................................................................................................
ContactPhone Number (54J.)488-5346 ................................................................................................................................................
Overview of Ekilsting Systern
In 2016, the City provided water service to an average of approximately 8,,796 customer
connections, or 16,,461 equivalent residential units (ERUs), within the City's water service area. The
City limits comprise an area of approximately 6.58 square miles, which also represents the water
service area. The 2016 population served by the water system was approximately 20,,620.
The City's water supply is currently provided by the Reeder Reservoir and the
Talent-Ashland-Phoenix (TAP) "Emergency" Interne that conveys water supply from the Medford
Water Commission (MWC). Supplemental raw water supply may also be provided by the Talent
Irrigation District (TID). Water supply from Reeder Reservoir and TID is treated at the City's Water
Treatment Plant. Water supply from MWC is rechlorinated at the TAP booster pump station (BPS).
Water storage is provided by four treated water storage/distribution reservoirs that have a total
capacity of approximately 6.8 million gallons (MG). In addition,, the City's water system has 14
pressure zones with 31 pressure reducing stations. The system also has 4 booster pump stations
and approximately 119 miles of water main. A tabular summary of the 2016 water system data is
shown in Table 1-2.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH1 20190603.DOCX(6/19/2019 7:48 AM) 2
CHAPTER 1 CITY OF ASHLAND WATER SYSTEM PLAN
Table 1-2
2016 Water System Data
Water Service Population 20.,620
....................................................................................................................................................... .................................................................................................................................---------
Existing Water Service Area 6.50 Square Miles
....................................................................................................................................................... .................................................................................................................-------------------
Total Connections 81796
...............................................................................................---------—Tota I E R U s 16.,461
........................................................................................................ .................................................................................................................................................
Demand per ERU 177 Gallons Per Day
................................................................................................................................................................................................................................................................................................................................................................................................... --------- .........................................
Annual Consumption 1,065.,011,589 Gallons
................................................................................................................................................................................................................................................................................................................................................................................................... --------- ---- ...................................................................................................
Average Day Demand (ADD) 2.91 IVIGD
...................................................................................................................................................................................................................................................................................................................................................................................................—------------------------------------------
Maximum Day/Average Day Demand Factor 2.04
...............................---------------------------- ................................................................................................
Peak Hour/Peak Day Demand Factor 2.38
........................................................................................................................................................ ...............................................................................-------------------
Number of Pressure zones 14
Number of Sources and Total Capacity' 3 (10.0 MGD)
....................................................................................................................................................................................................................................................................................................................................................................---------------------------------- ...................................................................................................
Number of Storage Tanks and Total Capacity 4 (6.8 MG)
.......................................................................................................................................................
Number of Pump Stations 4
....................................................................................................................................................... ..............................................
Number of Pressure Reducing Valve Stations 31
....................................................................................................................................................... ..................................................................................................................................................................................................................................................................................................................................................................
Total Length of Water Main 119 Miles
-———------------------------------------------
'Does not include TO emergency supply.
.........................................................................................................................................................------------------------ ..............................................................................................................................................
Authorization and Purpose
In accordance with Oregon Administrative Rules (OAR 333-61-060),, this Water Master Plan (WMP)
was developed to satisfy the City's requirements for planning by the Oregon Health Authority. The
previous WMP was completed in 2012.The purpose of this updated WMP is as follows:
• To evaluate existing water demand data and project future water demands;
• To analyze the existing water system to determine if it meets minimum requirements and
the City's own policies, level of'service goals and design criteria;
• To identify water system improvements that resolve existing system deficiencies and
accommodate the systern's future needs for at least 20 years into the future;
• To prepare a schedule of improvements that meets the goals of the City's financial program;
• To document the City's existing water rights,their current status,, and future requirements;
• To evaluate past water quality and identify water quality improvements, as necessary; and
• To document the City's operations and maintenance program including personnel
requirements.
1-2 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH1 20190603.DOCX(6/19/2019 7:48 AM)
CITY OF ASHLAND WATER SYSTEM PLAN INTRODUCTION
I III
SuDTI mary of"' WMi�I`1' Cantents
A brief summary of the content of the chapters in the WMP is as follows:
• The Executive Summary provides a brief summary of the key elements of this WMP.
• Chapter 1 introduces the reader to the City's water system, the objectives of the WMP, and
its organization.
• Chapter 2 presents the water service area and describes the existing water system.
• Chapter 3 presents related plans, land use, and population characteristics.
• Chapter 4 identifies existing water demands and projected future demands.
• Chapter 5 discusses the water system analyses and existing system deficiencies.
• Chapter 6 presents the proposed water system improvements, and their estimated costs
and implementation schedule in a Capital Improvement Plan.
• Chapter 7 summarizes the financial status of the water system and presents a plan for
funding the water system improvements.
• The Appendices contain additional information and plans that supplement the main
chapters of the WMP.
Defi nit i on of Terms
The following terms are used throughout this WMP.
Consumption: The true volume of water used by the water system"s customers. The volume is
measured at each customer's connection to the distribution system.
Cross Connection: A physical arrangement that connects a public water system, directly or
indirectly, with facilities that could present the potential for contaminating the public water
system.
Demand: The quantity of'water required from a water supply source over a period of time to meet
the needs of domestic., irrigation,, commercial, industrial, and public uses, and provide enough
water to supply firefighting., system losses, and miscellaneous water uses such as hydrant flushing
and non-revenue water uses. Demands are normally discussed in terms of flow rate, such as million
gallons per day (MGD) or gallons per minute (gpm) and are described in terms of a volume of water
delivered during a certain time period. Flow rates pertinent to the analysis and design of water
systems are as follows:
• Average Day Demand (ADD)-, The total amount of water delivered to the system in a year
divided by the number of days in the year.
• Maximum Day Demand (PDD): The maximum amount of water delivered to the system
during a 24-hour time period of a given year.
• Peak Hour Demand (PHD): The maximum amount of water delivered to the system,
excluding fire flow, during a 1-hour time period of a given year. A system's peak hour
demand usually occurs during the same day as the IVIDD.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCHl 20190603.DOCX(6/19/2019 7:48 AM) 1-3
CHAPTER 1 CITY OF ASHLAND WATER SYSTEM PLAN
Equivalent Residential Units (ERUs): One ERU represents the amount of water used by one
single-family residence for a specific water system. The demand of other customer classes can be
expressed in terms of ERILIs by dividing the demand of each of the other customer classes by the
demand represented by one ERU.
Fire Flow: The rate of flow of water required during firefighting, which is usually expressed in terms
of gpm.
Head: A measure of pressure or force exerted by water. Head is measured in feet and can be
converted to pounds per square inch (psi) by dividing feet by 2.31.
Headloss: Pressure reduction resulting from pipeline wall friction, bends, physical restrictions, or
obstructions.
Hydraulic Elevation: The height of a free water surface above a defined datum; the height above
the ground to which water in a pressure pipeline would rise in a vertical open-end pipe.
Maximum Contaminant Level (MCL): The maximum permissible level of contaminant in the water
that the purveyor delivers to any public water system user.
Pressure Zone: A portion of the water system that operates from sources at a common hydraulic
elevation. For example,. the 2170 Granite Zone 1 refers to one of the City Is s primary pressure zones,
which has a reservoir with an overflow elevation of 2J70 feet.
Purveyor: An agency, subdivision of the state, municipal corporation, firm, company, mutual or
cooperative association, institution, partnership, or persons or other entity owning or operating a
public water system. Purveyor also means the authorized agents of such entities.
Supply: Water that is delivered to a water system by one or more supply facilities., which may
consist of supply stations, booster pump stations., interties, springs, and wells.
Storage: Water that is "stored" in a reservoir to supplement the supply facilities of a system and
provide water supply for emergency conditions. Storage is broken down into the following three
components, which are defined and discussed in more detail in Chapter 5: operational storage,
emergency storage and fire flow storage.
Water Loss: Water that is measured as going into the distribution system but not metered as going
out of the system.
1-4 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH1 20190603.DOCX(6/19/2019 7:48 AM)
CITY OF ASHLAND WATER SYSTEM PLAN INTRODUCTION
Ust of
The abbreviations listed in Table 1-3 are used throughout this WMP.
Table 1-3
Abbreviations
ACS American Community Survey
........................................................................................................................................................................................................................................................................................................................................................................... ........................................................--------------------. .....................................................................................................................................................
ADD Average Day Demand
........................................................................................................................................................................................................................................................................................................................................................................... .........................................................................................................................................................................................................................................................................
AWWA American Water Works Association
..........................................................................................................................................................................................................................................................................................................................................................................—--------- .....................................................................................................................................................
BPS Booster Pump Station
..........................................................................................................................................................................................................................................................................................................................................................................—---------. .......................................................................................................................................................................................................................................
CCR Consumer Confidence Report
.......................................................................................................................................................................................................................................................................................................................................................................... ..................................................................................................................................................................CIP Capital Improvement Program
..................................................................................................... .....................-----------------------
City City of Ashland
.....................................................................................................---------------------------------------------------------------
County Jackson County
..................................................................................................... ..............................................................................................................................................................................................................................................................................................................................................................................................................
DBP Disinfection Byproduct
......................................................................................................--------------------------------------—————————————-----------------------------
DLCD Department of Land Conservation and Development
..................................................................................................... ----------........................................---------------------- ....................................................................................................................................................
EPA U.S. Environmental Protection Agency
.....................................................................................................---------------------------------------------—--———-----------------------------------------
ERU Equivalent Residential Unit
.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
fps Feet per second
.....................................................................................................---------------------------
gpd Gallons per day
..................................................................................................... ---------—---------.......................................----
gpm Gallons per minute
............................................................................................................................................................................................................---------- --------------------------------- .....................................................................................................................................................
HDPE High Density Polyethylene
..................................................................................................... -----------------.........................................................................................................................................................................................................................................................................................................................
hp Horsepower
..................................................................................................... -------------------- ......................................................................................................................................................................................................................................................................................................................................................................................................................................
MCL Maximum Contaminant Level
.....................................................................................................----------------- .............................................................................................................................................................................................................
MCLG Maximum Contaminant Level Goal
..................................................................................................... ---------------------------------------------------------------------- .....................................................................................................................................................
MDD Maximum Day Demand
.....................................................................................................—--------- .........................................................................................................................................................................................................................................................................................................................................................................
MG Million Gallons
.....................................................................................................—---------- --------
MGD Million Gallons per Day
.............................................................................................................................................................................................................................................
mg/L Milligrams per Liter
..................................................................................................... ----------------------------
MWC Medford Water Commission
..................................................................................................... --------- ..................................................................................................................................................................................................................................................................................
OAR Oregon Administrative Rules
...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
OHD Oregon Health Division
...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
PHD Peak Hour Demand
.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCHl 20190603.DOCX(6/19/2019 7:48 AM) 1-5 IN 12
CHAPTER 1 CITY OF ASHLAND WATER SYSTEM PLAN
1.11.1 millilill
PRV Pressure Reducing Valve
...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
PRV Pressure Relief Valve
.........................................................................................................................................................................................................................................
psi Pounds per square inc......h
PVC Polyvinyl Chloride
.....................................................SCADA Supervisory Control and Data Acquisi............................................................-------------------tion
SDWA Safe Drinking Water Act
............................................................................SEPA State Environmental Policy Act
SOC Synthetic Organic Chemical
....................................................................................................................................................... .........................................----------SWTR Surface Water Treatment Rule
TAP Talent-Ashland-Phoenix Partnership
TID Talent Irrigation District
UGB Urban Growth Boundary
USGSUnited States Geologic....................................................................................................................................................... --------------------------------------------------------al Survey
VOC Volatile Orga—---------——nic Chemical
WMP Water Master Plan
...................................................................................................................................................................................................................................................................................................................................................................................................------------------------------
WTP Wa...................---ter Treatment Plant
WUE ..................... water Use........Efficiency
1-6 Z:\BOTHELL\DATA\COA\1016-096 wM>2016\03 oELIVERaeLE:\CHA>.Ea:1-4:0190411u018.wMo<H1 20190603.00<X(en9a01s,:<aAM)
2 � WATER SYSTEM DESCRIPTION
011111 E1111111111111111111110IN
2 WA1111111111111111"Ell SYS.......!��`ENA DESCI`111`II)
IntrodUctior"i
This chapter describes the City's existing and future water service areas and water service
agreements and provides a thorough description of the water system and its individual
components. The results of the evaluation and analyses of the existing water system are presented
in Chapter S.
\A/ater Service Area
I............listory
The City's primary source of raw water is the Ashland Creek watershed. In 1887 through 1890, the
City installed its first water works and pipe network to serve the City's early settlers. In 1909, piping
was installed to deliver water to town from the East and West Forks of Ashland Creek. In 1928, the
City constructed Hosler Dam at the confluence of the West and East Forks of Ashland Creek. Reeder
Reservoir, the resulting impoundment, provides 280 MG of storage for the City's water supply.
Water from the reservoir is conveyed to the City's WTP located along Ashland Creek, approximately
1 mile below Reeder Reservoir. The City has an agreement with the TID to provide additional raw
water supply in drought years. When needed,TO water is pumped from Ashland Canal by the
City's Terrace Street Pump Station up to the WTP,, where it is treated with the Ashland Creek
Supply. In 2016, construction of permanent facilities was completed to enable supply from the
MWC to be conveyed to the City via a partnership with the cities of Talent and Phoenix; otherwise
known as the TAP Supply System or TAP Intertie.
Exis Ling Water Service Area
The City's existing water service area is equivalent to its City limits, which covers an area of
approximately 6.58 square miles with an Urban Growth Boundary of 7.40 square miles. The existing
water service area is shown on Figure 2-1.The existing service area is approximately bordered by
Interstate 5 (I-5) to the north, by the topography of the Siskiyou Mountain Range to the south and
the west., Highway 66 to the east,, with Highway 99 cutting through the middle of the City. Along
the north-south axis of'the system, the existing retail water service area is approximately 2.6 miles
long. Along the east-west axis, the existing retail water service area varies from 1.9 to 3.8 miles
wide.
Along with the water service area, Ashland's city limits and urban growth boundary (UGB) are
shown in Figure 2-1.
Future Water Service Area
The City's UGB includes most areas of the existing water service area, as well as additional area to
the northwest near the TAP Booster Pump Station (BPS) and areas to the southwest to Tolman and
Neil Creeks. In order for customers or properties to be provided water, their property must be
N12
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH2 20190603.DOCX(6/19/2019 7:58 AM) 2-1
Aaamftwo
CHAPTER 2 CITY OF ASHLAND WATER SYSTEM PLAN
annexed into the City (although the City does have a resolution to allow water service to customers
with failed wells). The UGB is approximately 7.40 square miles and is shown on Figure 2-1.
I oloography
The topography of the existing service area is generally rising in elevation from the northwest
corners to the southern side of the city, with the highest elevations being the hillsides southwest of
the Granite Reservoir. Service area elevations range from approximately 1,.700 feet above sea level
in the northwest to approximately 2,.800 above sea level feet in the southwest portion of the
service area. The City's system is located within the Rogue River watershed.
howerAory of Existing Water Facilities
This section provides a detailed description of the existing water system and the current operation
of the facilities. The analysis of the existing water facilities is presented in Chapter 6.
Pressure Zones
The City's highest and lowest elevation customers are separated by approximately 1.,100 feet. The
wide elevation range requires the water pressure be increased or reduced to maintain pressures
that are safe and sufficient to meet the flow requirements of the system.The City achieves this by
dividing the water system into four major service areas (named after the storage facilities that
serve them), each of which contains several pressure zones as shown in Figure 2-1. The hydraulic
grade in each pressure zone is regulated by reservoir levels, pressure reducing station settings,
pump station settings, or a combination of these, as illustrated in the hydraulic profile (Figure 2-2).
The Granite service area is comprised of three different pressure zones: 2170 Granite Zone 1;
1980 Granite Zone 2; and 2060 Granite Zone 3. The 2170 Granite Zone 1 is supplied in the
southwest from the Granite Reservoir and the TAP BPS. The 2170 Granite Zone 1 serves customers
within an elevation range of'approximately 1,,800 feet to 2,600 feet., and is situated between the
northwest portion of the City to Clay Street at its most eastern point. The 2170 Granite Zone 1 has
six pressure reducing valves (PRVs) supplying water to the two lower 1980 and 2060 Granite Zones.
The 1980 Granite Zone 2 is supplied by five PRVs from the 2170 Granite Zone 1 and three other
PRVs from the 2060 Granite Zone 3. The 1980 Granite Zone 2 serves customers within an elevation
range of approximately 1,300 feet to 1,,840 feet,, and is the most northerly pressure zone. The
1980 Granite Zone 2 is predominantly located between the railroad to the west and Patton Lane to
the east.
The 2060 Granite Zone 3 is located just east of the 1980 Granite Zone 2 on Patton Lane and north
of the 2170 Granite Zone 1 on Clear Creek Drive. The 2060 Granite Zone 3 is supplied by two PRVs
from the 2170 Granite Zone 1,, which establish pressures in the zone. The 2060 Granite Zone 3
currently serves customers within an elevation range of approximately 1,,740 feet to 1,340 feet.
The large Crowson service area is comprised of 8 separate pressure zones: the 2425 Crowson
Zone 1; 2200 Crowson Zone 2; 2270 Crowson Zone 3; 2640 Crowson Zone 4; 2270 Crowson Zone 5;
2290 Crowson Zone 6; 2570 Crowson Zone 7; and 2610 Crowson Zone 8.
2-2 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH2 20190603.DOCX(6/19/2019 7:58 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM DESCRIPTION
The 2425 Crowson Zone 1 has two separate sections divided by a small sliver of the 2170 Granite
Zone 1. The westerly section of the zone is directly supplied by the WTP, while the other section of
the pressure zone is indirectly supplied by the WTP via the Crowson Reservoir. The 2425 Crowson
Zone 1 serves customers within an elevation range of approximately 2.,080 feet to 2,,440 feet. The
2425 Crowson Zone 1 has 12 PRVs supplying water to lower zones: 4 PRVs provide water to the
2170 Granite Zone 1, 1 PRV provides water to the 2270 Crowson Zone 5,, 2 PRVs provide water to
the 2270 Crowson Zone 3,, 4 PRVs provide water to the 2290 Crowson Zone 6; and 1 PRV provides
water to the 2200 Crowson Zone 2. Two PRVs can supply the 2425 Granite Zone 1 from the 2559
Alsing Zone 1.
The 2200 Crowson Zone 2 is supplied with water from two PRVs; one from the 2425 Crowson
Zone 1 and one from the 2290 Crowson Zone 6. The 2200 Crowson Zone 2 is the eastern most
pressure zone, located between 1-5 and Hidden Lane.The 2200 Crowson Zone 2 serves customers
within elevations between approximately 1,,800 feet and 2,120 feet.
The 2270 Crowson Zone 3 is supplied by two PRVs from the 2425 Crowson Zone 1, which establish
pressures in the zone. The 2270 Crowson Zone 3 serves customers in an elevation range between
approximately 1,960 feet and 2,160 feet. The 2270 Crowson Zone 3 is located just east of Ashland
Creek,, between Iowa Street to the south and Hargadine Street to the north.
The 2640 Crowson Zone 4 is a small zone supplied with water from the South Mountain Booster
Pump Station. The 2640 Crowson Zone 4 serves customers within an elevation range of
approximately 2,340 feet and 2,,480 feet,,just south of'Emma Street and north of Pinecrest Terrace.
The 2270 Crowson Zone 5 is a very small pressure zone consisting of one small section of Harmony
Lane, serving customers between Siskiyou Boulevard and Lit Way. The 2270 Crowson Zone 5 is
supplied water from one PRV from the 2425 Crowson Zone 1 and serves customers within an
elevation range of approximately 2,.040 feet and 2,,060 feet.
The 2290 Crowson Zone 6 is provided water through the 2425 Crowson Zone 1 by four pressure
reducing valves. The pressures in this zone are established by these four PRVs. The 2290 Crowson
Zone 6 currently serves customers between the elevations of approximately 1.,880 feet to
2,,080 feet.
The 2570 Crowson Zone 7 is located just east of 2610 Crowson Zone 8., which supplies the zone
from a single PRV. The 2570 Crowson Zone 7 serves customers between an elevation range of
approximately 2,240 feet and 2.,340 feet.
The 2610 Crowson Zone 8 is located towards the southwest corner of the City. The 2610 Crowson
Zone 8 is provided water directly from the Park Estates Booster Pump Station and the Crowson
Reservoir. This zone serves customers in an elevation range of approximately 2.320 feet to
2,.600 feet. The 2610 Crowson Zone 8 serves customers predominantly along Ashland Loop Road
and Morton Street.
The Fallon service area consists of only two smaller pressure zones on the west side of the City: the
2586 Fallon Zone I and the 2470 Fallon Zone 2. The 2586 Fallon Zone I is located between
Creekside Road and Strawberry Lane. The Fallon Reservoir serves the 2586 Fallon Zone 1, which is
supplied from the Strawberry Booster Pump Station. This zone serves customers at an elevation
range of approximately 2.,280 feet to 2,,580 feet.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH2 20190603.DOCX(6/19/2019 7:58 AM) 2-3 M12
CHAPTER 2 CITY OF ASHLAND WATER SYSTEM PLAN
The last Fallon pressure zone is the 2470 Fallon Zone 2, which is located between the
2425 Crowson Zone 1 and the 2586 Fallon Zone 1. The 2470 Crowson Zone 2 serves customers in
an elevation range of approximately 2,200 feet to 2,470 feet and is supplied water from the
2586 Fallon Zone 1 by one PRV.
The Alsing service area also consists of only one pressure zone. The 2559 Alsing Zone 1 is located at
the south end of the City between Leonard Street and Tolman Creek Road. The Alsing Reservoir
serves the 2559 Alsing Zone 1,, which is supplied by the Hillview Booster Pump Station.This zone
serves customers within an elevation range of approximately 2,160 feet and 2,.560 feet.
Supp�y I acifties
lire tiiro d tj ct i o iin
The City"s primary source of raw water is the Ashland Creek watershed. In 1928., the City
constructed Hosler Dam at the confluence of the West and East Forks of Ashland Creek. Reeder
Reservoir, the resulting impoundment, provides 280 MG of'storage for the City"s water supply.
Water from the reservoir is conveyed to the City"s WTP through a 24-inch diameter raw water
transmission line. Treated water is conveyed to the City in a 30-inch diameter transmission line.
The City also has an agreement with the Talent Irrigation District (TID)to provide additional supply.
The TID supply is typically used only in drought years. When needed.,TID water is pumped from the
Ashland Canal by the City"s Terrace Street Pump Station to the WTP., where it is treated.
A third supply is the City"s TAP Intertie.The TAP Supply System delivers treated water from the
Medford Water Commission to the City's TAP BPS. At this location,the water is chlorinated and
boosted to the 2170 Granite Zone 1 through 16-inch piping in Highway 99.
A summary of the City"s sources of supply is shown in Table 2-1.
2-4 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH2 20190603.DOCX(6/19/2019 7:58 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM DESCRIPTION
Table 2-1
Supply Facilities Summary
1111h1h11iuiii
Reeder Reservoir 2425 Crowson Zone 1 Active N/A Flocculation., Filtration, Disinfection
..................................................................................................... ................................................................................................................---------- ----------------------------------------------------------------------------------------------------TID Intertie 2425 Crowson Zone 1 Active 21250 Flocculation, Filtration, Disinfection
..................................................................................................... .................................................................................................................................................................................-------------------....................................................................................................................................................
TAP Intertie 2170 Granite Zone 1 Active � 11730 System
...................................................................................................... .............................................................................................................................................. ............................................................................... ........................................................................................................................................................
Water -'Freatment
Wa-t.:er-Freatment Hant
The City"s WTP is located along Ashland Creek,
approximately 1 mile below Reeder Reservoir. The
WTP has a capacity of approximately 7.5 IVIGD.,
based on the plant"s historical performance and
input from operations staff. Prior to 1948,
screening and chlorination were the only
treatment given to Ashland Creek water. In 1948, a
rapid sand filtration plant was built adjacent to the
power generating facility., utilizing alum as a
coagulant and lime for pH control.The WTP was Ashland Creek WTP
converted to a high rate filtration plant in the
mid-1960s.
The treatment process now consists of flocculation, filtration, and disinfection. Water flows into
the treatment plant from a combination of three sources: 1) diversion water from the power
generator; 2) direct flows from Ashland Creek; and, 3) flows from the TID intertie.The water flows
through a flash mixing process, then to the flocculation basins. The high rate filtration plant
continues utilizing alum as a coagulant to aid particle agglomeration and soda ash for alkalinity
adjustment and pH control. A chlorine solution is fed immediately ahead of the flocculation tanks.
The chlorine feed is adjusted in response to the water temperature. Following flocculation, the
water flows through the filter beds and then into a 168,000-gallon clear well where the water is
chlorinated and distributed to the system.
Alum, sodium hypochlorite, soda ash, and activated carbon can be mixed with the raw water in the
flash mixing tank as part of the treatment process to aid in the removal of solid particles and other
contaminates. The activated carbon is used only when TO water is included in the system and the
color is high. The activated carbon absorbs the organic material in the raw TID water, which
improves color, taste, and odor.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH2 20190603.DOCX(6/19/2019 7:58 AM) 2-5 qt', N 12
"m000011# $kfahb,", K
CHAPTER 2 CITY OF ASHLAND WATER SYSTEM PLAN
Mechanical flocculators are installed in the flocculation basins. Sediment from the flocculation
chamber and the filter backwash waste is piped to a sludge lagoon. The six filters contain a dual
media filter material of sand and anthracite coal. These filters remove the remaining particles in
the water before it enters the clear well. Backwash water for the filters is pumped from the clear
well.
��r' r,✓ r'X°xv V i, i r - � r 111J1 /%%/// .i Xm'�f>'�r�//�Y y �//
.„ �
a S U P P y
pm '`Iu✓j"�II V X r ,'rye/ r'; %,%,°, / /i i „,X /��%0 1�,;��//. f � .l 1�! (,V� I,i.
r
rvoir
Reeder Reservoir, created by Hosler Dam, is
6 YklyYfl
located approximately one mile upstream of the
WTP at the confluence of the West and East f
Forks of Ashland Creek. The reservoir has a Frw°
n
resulting impoundment of 280 MG of storage '
for the City's raw water supply. Water from the
reservoir is conveyed to the Cit 's WTP through
v y �
a 24-inch diameter raw water transmission line. Reeder Reservoir
��;;;;; n L it L i -sh4-i C a o�-
The City has an agreement with TID to provide
V d
additional supply. The TID supply is typically
r ,3
used only g in drought years. When needed TO
water is pumped from the Ashland Canal by the
City's Terrace Street Pump Station up to the
T f ��
WTP where it is treated with the Ashland r
Creek supply. ofCanal /
y o date, use o the
at the WTP has been for short periods only and
has been accomplished with the CIty's current
MOM'"-
staffing level. However, in future years,the
f ,
Ashland Canal may be used more frequently
and for longer durations. Terrace Street Pump Station
t e rt i
A partnership was created in 1997 between the cities of Talent, Ashland, and Phoenix to supply
water to these jurisdictions from the MWC. MWC water is purchased by the partnership and
delivered to Phoenix and Talent via the Regional Booster Pump Station, located north of Phoenix. A
24-inch transmission main conveys water supply from Phoenix to Talent. Supply to Ashland is
conveyed through Talent's distribution system,then through a 16-inch transmission main and the
TAP BPS to Ashland's 2170 Granite Tone 1.
The TAP BPS was completed in 2016 and is located at 2073 W. Jackson Road near the northwesterly
boundary of the City.The TAP BPS consist of two vertical turbine centrifugal pumps with a nominal
installed capacity of 3.2 MGD (2,250 gpm) and a firm capacity of 2.0 MGD (1.,400 gpm). There are
2-6 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018—WMPCH2 20190603.DOCX(6/19/2019 7:58 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM DESCRIPTION
provisions for a third pump to provide an
ultimate firm capacity of 3.2 MGD (2,250
,
gpm). The station is equipped with a booster
chlorine system. The pump station and
booster chlorination facility are controlled by
an onsite programmable logic controller PLC. f ,,
t
Operation, status and set points can be t
r
viewed and adjusted at the station. The r
station can also be monitored and controlled
b the Cit s supervisory control and data
Y Y p Y
acquisition (SCADA) control system. TAP BPS
a r p Station Facilities
The City's water system has four booster pump station facilities that provide supply to the
2559 Alsing Zone 1, 2540 Crowson Zone 4, 2580 Fallon Tone 1, and 2610 Crowson Zone 8. A
summary of the pumping facilities is shown in Table 2-2, and a detailed description of each facility
is provided in the following sections.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH2 20190603.DOCX(6/19/2019 7:58 AM) 2-7
CHAPTER 2 CITY OF ASHLAND WATER SYSTEM PLAN
Table 2-2
Booster Pump Facilities Summary
Ill,im 11 1
2425 Crowson 2559 Alsing 1 650 30
Hillview BPS 1984
....................................................................................................................................................................................................................................
Zone 1 Zone 1 2 650 30
South Mountain BPS Unknown 2425 Crowson 2640 Crowson ------------------------1------------------------------------------145............................. 15
Zone 1 Zone 4 2 600 40
2425 Crowson 2586 Fallon 1 ----------200----— 40
Strawberry BPS 1994
Zone 1 Zone 1 2 200 40
1 50 5
----------- . .............................................................................................................................
2 152 15
2425 Crowson 2610 Crowson ---------- ----—
Park Estates BPS 2019 3 152 15
Zone1 Zone 1 ----------- . ............................................................................................................................
4 2000 136
-------- . ..........................................................................................................................
5 2000 136
................................................................................................................................................................................
I.........hHviiew Booster [lump Statiioo�'i
The Hillview BPS was originally constructed in 1984 to
supply water to the Alsing Reservoir and maintain
pressure in the 2559 Alsing Zone 1. The booster station Is
located at the northeast corner of Peachey Road and
Hillview Drive. The two pumps have a maximum flow rate
of 650 gallons per minute (gpm) and are powered by 30
horsepower (hp) motors.The booster pump station has a
power receptacle to enable connection of a portable
generator.
Hillview BPS
2-8 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH2 20190603.DOCX(6/19/2019 7:58 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM DESCRIPTION
South a IIri 'III n Boos„ III I" a II 'i p S La„L III o Iiri
The South Mountain BPS is located on the
corner of Ivy Lane and South Mountain Avenue.
,m
The South Mountain BPS contains two
differently d f f t I sized
i zed pumps. The smaller pump has
a designed flow range of: 00 gpm to 145 gpm
Y A
with a 15 hp motor. The larger pump has a
designed flow range of'400 gpm to 000 gpm
with a 40 hp motor. boostere pump station
ion
has an automatic transfer switch to enable use
of an adjacent generator.
� 4
South Mountain BPS
Strawberry Booster Pump Station
The Strawberry BPS was built in 1994 and is located
v
r �
near the intersection of Nutley Street and Alnut Street.
The booster station was designed to convey water to
the 2586 gallon Zone 1 and the gallon Reservoir in the
hilly northwest area of theCity. The two identical
su I water at a flow rate of 200 pm and are
pumps supply Y gpm
rl (I i
powered by 40 hp motors. The booster pump station
has a power receptacle to enable connection of a
portable generator.
Strowberry BPS
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH2 20190603.DOCX(6/19/2019 7:58 AM) 2-9
CHAPTER 2 CITY OF ASHLAND WATER SYSTEM PLAN
I„ ir' I�,;;;;;.s„t,n a � Boos„I.a iir I,,, T �m� iii ii�
The Park Estates BPS is located next to the Crowson Reservoir at the
crossing of Ashland Loop Road and Terrace Street. The Park Estates
BPS was just recently replaced to meet future demands and provide
fire protection to customers at the City's highest elevations. The
new pump station includes one small 5 hp duty pump on a variable
frequency drive motor, two 15 hp pumps on variable frequency '
drive motors to meet peak hour demands, and two 136 hp fire y
pumps to provide fire protection at the City's forest interface. The
new Park Estates BPS includes a backup generator and automatic
transfer switch. r
l�o r a,,,, ,,,, C I I I t I e s Original Pare Estates BPS
The City"s water system has four storage facilities that provide storage to various Zones in the
system. A summary of the storage facilities is shown in Table -3, and a detailed description of each
facility is provided in the following sections.
Table 2-3
Storage Facilities Summary
III..
Ashland Loop Rd. & 2420 Crowson 2.1 132.62 21406 21425
Crowson Terrace St. zone 1..................................................................................................................................------------------------------------------------------—----------- —----------
1928
Alsin Morninglight Dr. & 2559 Alsing 1984 2.1 107.0 21530 21559
g Greenmeadow Way Zone 1
FallonHitt Rd. 2586 Fallon...........................................................................................................................................................................................................................................................................----------------------- 1994 0.5 58.0 2,560 21586
Zone 1
2170 Granite 1948 2.1 134.0 2,145 21173
Granite Granite 5t. Zone 1
Crowson [��eservoir-
AiThe Crowson Reservoir is located at
the southwest corner of Ashland
,Q �� UI � uYf(rro%��d��ii��y�o- y,�/�Jrr✓rGY,Q�i 1 ud C.
f l�r� 11 �U%9r '?� � I dr p� �✓yq ��i r ,+i
p
Loo Road and Terrace Street and
. . yr �`'�tl��r�9i✓ ����,,;I
provides storage capacity to the � �»� � t
i rek
ii tW ,rty yj�/I vr« ii ..
• • �p rJr a
`�lfl �1 uv�GiJ +
� l
lJ��iii1N:
eight different Crowson pressure
zones. The reservoir Is supplied by
J
�,x,;.�.., �°,y�� � ,.� „ji �� ,,�/,1 i�" ,, ,��, „�,:.,Y�, �Ndi,,, "ifllry���-. �,/%��,i,. I����,,,,/%/%/iiii%/Jr;�� ar ,fin ��,•..
„-,,f.,;. ����in°�Yh.e- "°'' 'ri �G�'i//�,,, J �r„� r�i�NG �„✓,llf�l%/�,.;�Ti / ,gym
�,If.oi .. i��"�yt�!�+�"'r,r„�p;,f „„:��/ ��1��/�i� -,l � 4'f�� �/i iry '�%/fi)✓�//'�"r�/ 7 ,r/ „I� �h' ✓l��r"�S ,i.r^""
the WTP and was originally
constructed in 1928. Crowson Reservoir
2-10 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH2 20190603.DOCX(6/19/2019 7:58 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM DESCRIPTION
The Crowson Reservoir is a buried concrete storage facility that is 19.9 feet deep with an oval
shaped cross-sectional area of approximately 13,813 square feet (SF), and a capacity of 2.1 MG.
The reservoir is surrounded by a gated, 6-foot-tall fence with no barbed wire. The reservoir has a
ground elevation of 2,.406 feet and an overflow elevation of 2.,425 feet; however, the storage
volume provided by the reservoir varies by depth.
Nshrig ["eservoir
Built in 1984 Alsing Reservoir is an above
ground-storage tank with the with a capacity of
2.1 MG that stores water for the Alsing pressure
zones. This reservoir is supplied water through
the Hillview Booster Pump Station. The Alsing
Reservoir is located at the end of Alsing
Reservoir Road between Morninglight Drive and y ,f
Green Meadows Way. The 107-foot-diameter
reservoir has a base elevation of 2,,530 feet and
an overflow elevation of 2,,559 feet.The Alsing
Reservoir is a concrete storage facility that is Alsina Reservoir
gated off at the road but is not surrounded by a
fence.
f,:aHon [\eservoir
The Fallon Reservoir was brought online in 1994 and is located at
183 Hitt Road,. about 0.3 miles south of Strawberry Lane. This
reservoir provides storage for both the 2586 Fallon Zone 1 and
the 2470 Fallon Zone 2. The Fallon Reservoir is an above-ground
tank that has the capacity to store approximately 0.5 MG.The
Fallon Reservoir stands 25.5 feet tall, has a diameter of 58 feet, a
base elevation of 2,,561 feet,, and an overflow elevation of
2,,586 feet.
Water is supplied to the reservoir by the Strawberry Booster
Pump Station just off the intersection of'Nutley Street and Alnut
Street. Fallon Reservoir
No
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH2 20190603.DOCX(6/19/2019 7:58 AM) 2-11 12
CHAPTER 2 CITY OF ASHLAND WATER SYSTEM PLAN
ra Ilni III L eI,,, s ry o III Iir
The Granite Reservoir is located adjacent took F `r7 rrs h
Ashland Creek on Granite Street between w
r
Ashland Creek Drive and Glenview Drive. The �
reservoir is an above-ground tank with a storage
capacity of 2.1 MG for all three Granite pressure
" T
p Y p ,
zones and was constructed in 1948.
The Granite Reservoir stands 28 feet tall, has a
diameter of 134 feet a base elevation of 2 145
feet and an overflow elevation of 21173 feet. The
reservoir is supplied by control valve that Granite Reservoir
conveys water from the 2425 Crowson Zone 1.
The reservoir can also be supplied by the TAR BPS when the intertie is operating.
DistribUtion and System
The City's water system contains approximately 119 miles of water main ranging in size from 2
inches to 30 inches. As shown in Table 24, most of the water main (approximately 80 percent)
within the system is 8 inches in diameter or smaller.The remaining 20 percent of the water main is
10 inches in diameter or larger.
Table T-4
Water Main Diameter Inventory
or smaller 1061911 17.0%
6 213,163 33.9%
8 182,368 29.0%
...................................................................................................................................................................................................
10 16,195 2.7%
12 58,940 9.4%
14 21055 0.3%
.............----------------......................................................................................................................................................................................................
16 27,294 4.3%
...................................................................................................
18 88 0.0%
20 31419 0.5%
----------------- ----—-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
24 12,21T 1.9%
30 41662 0.7%
......................................................................................................................................................................................................................................................................................................
Total I 628,032 100%
2-12 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH2 20190603.DOCX(6/19/2019 7:58 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM DESCRIPTION
The water main in the City's system is constructed of either asbestos cement, cast iron, ductile iron,
galvanized iron, HDPE, PVC, or steel, with approximately 56 percent of the system constructed of
ductile iron pipe. All new water main installations are required to use ductile iron pipe in
accordance with the City's development and construction standards. Table 2-5 shows the City's
existing water main inventory by material.
Table T-5
Water Main Material Inventory
Asbestos Cement 81826 1.4%
.........................................................................................................................................................................................----------Cast Iron 244,482 38.9%
.........................................................................................................................................................................--------- ---------
Ductile Iron 3511766 56.0%
.........................................................................................................................................................----------------------------------------
Galvanized Iron 21708 0.4%
HDPE 11086 0.2%
..................................................................................................................-------------------------------------------
PVC 21260 0.4%
Steel----------------------------------16190 -----------2.7%
....................... -------------
Tota I 628,rO32 100
Approximately 41 percent of the water main within the system was constructed in the 1970s or
before and is reaching or has reached its projected life expectancy. The majority of this older water
main is asbestos cement or cast iron pipe. The remainder of the water main in the City's water
system (discounting water main of unknown installation year) was constructed in the 1980s or later
and is generally in good condition. A detailed breakdown of the City's water main installation year
inventory is shown in Table 2-6.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018—WMPCH2 20190603.DOCX(6/19/2019 7:58 AM) 2-13 lru12
lfu,a `
CHAPTER 2 CITY OF ASHLAND WATER SYSTEM PLAN
Table 2-6
Water Main Installation Year Inventory
Before 1910 2,.589 0.4%
...........................................................................................................................................................................................................................................................................................................---------
1910S 4.,071 0.6%
----------------------------- ...........................................................................................................................................................................................................................
1920s 10,351 1.6%
.............................................................................................................................................................................................................................................................................----------—-----------------
1930s 26,217 4.2%
....................................................................................................................................................................................................................................................................................
1940s 33,985 � 5.4%
.............................................................................................................................................................................................................................................---------....................................................................................................................
1950s 36,595 � 5.8%
.....................................................................................................................................................................................................................................................................................---------------------------------------
1960s 70,979 11.3%
.............................................................................................................................................................................................................---------...............................................................................
1970s 71,925 11.5%
............................................................................................................................................................................................................................................................................................................................
13.0%
1980s 81,693 �
----------------------------- ..........................................................................................................................................................................................................................
1990s 88,955 14.2%
2000s 100,104 15.9%
...............................................................................................................................................---------------------------------
2010s 51325 0.8%
Unknown 95,243 15.2%
...................................................................................................................................................................-----------.....................................................................................................................................
L .....Total —------6 2 8,032 .............................................1 0 0%...............................................
Rr�esst..Are Reducing and Control Valve Stations
Pressure reducing stations are connections between adjacent pressure zones that allow water to
flow from the higher pressure zone to the lower pressure zone while reducing the pressure of the
water to maintain a safe range of operating pressures in the lower zone. A pressure reducing
station is essentially a below-grade vault (typically concrete) that normally contains two PRVs,
sometimes a pressure relief valve, piping, and other appurtenances. The PRV hydraulically varies
the flow rate through the valve (up to the flow capacity of the valve) to maintain a constant set
pressure on the downstream side of the valve for water flowing into the lower pressure zone.
Pressure reducing stations can serve multiple purposes. First,,they can function as an active supply
facility by maintaining a continuous supply of water into a lower zone that has no other source of
supply. Pressure reducing stations can also function as standby supply facilities that are normally
inactive (no water flowing through them). The operation of this type of station is typically triggered
by a drop in water pressure near the downstream side of the station. A typical application of this
function is a station that is only needed to supply additional water to a lower zone during a fire
flow situation. The pressure setting of the control valve within the station allows it to remain closed
during normal system operation and open only during high-demand conditions, like fire flows, to
provide the additional supply needed.
Pressure relief valves are control valves that are activated by higher than normal pressures and
flow water out of the system to relieve the pressure and protect the system from
2-14 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH2 20190603.DOCX(6/19/2019 7:58 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM DESCRIPTION
overpressurization. Pressure sustaining valves are control valves between adjacent pressure zones
that allow water to flow from the higher pressure zone to the lower pressure zone, provided the
pressure in the higher zone remains above a certain threshold. Flow control stations allow water to
flow from a higher pressure zone to a lower pressure zone at a regulated flow rate.
The City"s water system has one pressure relief valve station and 31 pressure reducing valve
stations, as shown in plan view in Figure 2-1 and in profile view on Figure 2-2. A list of the control
valve stations and related data is contained in Table 2-7.
Table 2-7
Water Main Installation Year Inventory
PRV-11 2170 Granite Zone 1 2170 Granite Zone 1
.....................................................................................................
PRV-2 2170 Granite Zone 1 1980 Granite Zone 2
.....................................................................................................---------------------------------------------------
PRV-3 2170 Granite Zone 1 1980 Granite Zone 2
.....................................................................................................---------------------------- -----------------------------
PRV-4 2170 Granite Zone 1 1980 Granite Zone 2
..................................................................................................... ..............................................................................................................................................................................
PRV-5 2170 Granite Zone 1 1980 Granite Zone 2
...........................................................................................................................................................................................................................................................................................................................................................................................................
PRV-6 2060 Granite Zone 3 1980 Granite Zone 2
..................................................................................................... -----------------------------
PRV-7 2170 Granite Zone 1 1980 Granite Zone 2
..................................................................................................... --------------------------------- ---------------------------------------------------------------------------------
PRV-8 2425 Crowson Zone 1 2170 Granite Zone 1
..................................................................................................... ________________
PRV-9 2425Crowson Zone 1 2170 Granite Zone 1
......................................................................................................-------------------------------- .............................................................................................................................................................................................
PRV-10 � 2586 Fallon Zone 1 2425 Crowson Zone 1
......................................................................................................------------------------———--———--------------—
PRV-11 � 2586 Fallon Zone 1 2470 Fallon Zone 2
..................................................................................................... ----------..............................................-----------------------------------------
PRV-12 � 2610 Crowson Zone 8 2270 Crowson Zone 7
..................................................................................................... -----------------------------------------------------------------------------------
PRV-13 2425 Crowson Zone 1 2270 Crowson Zone 3
......................................................................................................---------------------——--———-----------------------------------------------------------------
PRV-14 2270 Crowson Zone 3 2170 Granite Zone 1
..................................................................................................... ——____________________
PRV-15 2270 Crowson Zone 3 2170 Granite Zone 1
..................................................................................................... ---------------------------- ---------
PRV-16 2425 Crowson Zone 1 2170 Granite Zone 1
...............................................................................................................................................................................----.............................................................................................................................................................................................................................................................................
PRV-17 2425 Crowson Zone 1 2290 Crowson Zone 6
.................................................................................................................................................................................................................................--------- .....................................................................................................................................................
PRV-18 � 2290 Crowson Zone 6 2170 Granite Zone 1
..........................................................................................................................................................................................................................................................................................................................................................................................
PRV-19 � 2570 Crowson Zone 5 2425 Crowson Zone 1
..................................................................................................... ---------------------------------------------
PRV-20 � 2425 Crowson Zone 1 2170 Granite Zone 1
..................................................................................................... ---------------
PRV-21 2559 Alsing Zone 1 2425 Crowson Zone 1
................................................................................................................................................................................................................................................................................................................................................................................................
PRV-22 2559 Alsing Zone 1 2425 Crowson Zone I
......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
PRV-23 2425 Crowson Zone 1 2290 Crowson Zone 6
......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
PRV-24 � 2425 Crowson Zone 1 2200 Crowson Zone 2
........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH2 20190603.DOCX(6/19/2019 7:58 AM) 2-15
CHAPTER 2 CITY OF ASHLAND WATER SYSTEM PLAN
�iiiiiu III ��� iiii
'I N .1-1.1 A11111i 1�1111111'1111,11111
PRV-25 2290 Crowson Zone 6 2200 Crowson Zone 2
............................................................................................................................................................................................................................................................................ ----- ...................................................................................................
PRV-26 2425 Crowson Zone 1 2290 Crowson Zone 6
............................................................................................................................................................................................................................................................................ ......................................................................................................................................................................................................................................................
PRV-27 2425 Crowson Zone 1 � 2290 Crowson Zone 6
............................................................................................................................................................................................................................................................................. .......................................................................................................................................................
P RV-28 ----2425--Crowson--Zone--1-------------------------------------------�--2270-Crowson-Zone--3-----------------------
P RV-29 2170 Granite Zone 1 � 2060 Granite Zone 3
............................................................................................................................................................................................................................................................................. ------- -------------------
P RV-30 2170 Granite Zone 1 2060 Granite Zone 3
............................................................................................................................................................................................................................................................................. --------- ------....................................................................................................
PRV-31 2060 Granite Zone 3 1980 Granite Zone 2
............................................................................................................................................................................................................................................................................. ---------— -----------------------------------------------------------------------------------
PRV-32 I - -60 Granite Zone 3
....................................................................................................................................................................................................................................................................... ....................................................[_1980 Granite Zone 2
'Pressure Relief Valve
Water Systern Operation and C III" trol/1-6&rnetry and Supervisory Control System
A telemetry and supervisory control system gathers information and can efficiently control a
system by automatically optimizing facility operations. A telemetry and supervisory control system
also provides instant alarm notification to operations personnel in the event of equipment failures,
operational problems, fire, or other emergency situations.
The master telemetry unit for the SCADA system is located at the WTP-The computerized system
controls and monitors the entire water system, including levels in the storage facilities and pump
station operations. All remote sites utilize radio transmitters and receivers that communicate with
a signal repeater at Ashland Acres, which then sends the signal to the WTIP- Some programming
and logic control features are only accessible locally at the facility.
2-16 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH2 20190603.DOCX(6/19/2019 7:58 AM)
1V
`4-
.............
e
�o
.......................................
If
X
'x
CO
..............
..........
....................
I............I rj zo
HO
......................... ....... .........
T .-A I I k�d"A
v...........
J...............
.......... ...................
............. J L
0
.............
M" i�
I .............
Q0
001
00...............
. ...........
.. .............
w
.... ......
..........
vgco
....................................................... ...........
I-ell,
ji,
0
...... ------
....................
li,N1,
............-7/......
Ad
.........
�1,�, o
61,
A", LO
a .............
Y
h, A&
......................
C4
-7
CJ-'Ji"" """, A% �
.........................
/-MON
..........
P
d/
.................
?
All,�j
J// ............ . .....
——----- S qlw ..........................
ji
M
X!, J)
Ah
6v/'
.....................
............................. ..........
t ..............................
Ile
0
/A
All
1101
.........
...............................
CIN
Al
..........
ifl
.........
..........
or
d, ..........
's
F /Vsi "1 -1 1� ,.,i'�_ "I'll" --- ,), 1///1 IF
0 1/10/0
IV
..........................
.................... AV .........
/0
m
Mg flobt
y/O
..........
Ore
OF
AOF/,14/0
N-11""Ill
Of 011
('00 r
fi, /mom MOO
............ ...... ..............
0
y l"',
j
P/P
f
A/
o
gpo
A
Ali
po/P
. ......... A
A
a
W/F
..........
6M
....................
.......................................
"Od
N,
"'S
4/m/
..........
.............
"N
b
/av
a
/"'Not moo-
..........."'PI/
/pi
km
vr'
..........
......... mr
-41........�,/
lq .............
20/1�
o
.................
...........
...........
............ .................
.......... .................
a�/
/om
po//ro®r/
5111or
f
dmow
O � o
N a
o
w o
ono a�
� w �
N � O
� N
oo - N
O N �
� W
0 0 �,
I/�� , mm�uoiouuuiumouuw ........."upuuraa
1� ��1�1111�11@RuragNtlIIIIIIIIIIIpBagN,�BW
O � �
0�1°'O�I���� �
[-�
c3
VUO���re�"'��urrnm�u��u�rau�w;arrnno uwmaaunuutlumim�dttattaaan�rerwu�uuuua0a11�WOWiO�
V J
•
l
� @uuiu�uiuuuru�uiuuuru�uiuuuru�uiuuuru�uiuuuru�uiuuuru�uiuuuru
•O I;
I '
O
ct
� N
N
N
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,�
0
0 0 0 0
INC
N N N N
3 � LAND USE AND POPULATION
11111
3 1 mo I�o mm000�00000m� miiiii
................AND US E AN D
I ntr "i
The City of Ashland's Water Master Plan was last updated in 2012.The plan was developed to
satisfy the Oregon Health Division (OHD) water master plan requirements as outlined in Oregon
Administrative Rules (OAR) 333-61-060. The OAR requires, among other things., consistency
between land use and utility plans and their implementation. This chapter demonstrates the
compatibility of the City"s WMP with other plans, identifies the designated land uses within the
existing and future service area, and presents population projections within the City"s planning
area.
Cornpatibil"Ity with Other Plans
Introdt iction
To ensure that the WMP is consistent with the land use policies that guide it and other related
plans, the following planning documents were examined.
• Oregon Statewide Planning Goals& Guidelines-Goal 14 Urbanization-OAR 660-015-000(14)
• City of Ashland Comprehensive Plan
• Jackson County Comprehensive Plan
Oregan State'wide Hanning Goa� 14
The State of Oregon's Statewide Planning Goal 14 addresses urbanization, with the goal "To
provide for an orderly and efficient transition from rural to urban land use, to accommodate urban
population and urban employment inside urban growth boundaries,to ensure efficient use of the
land, and to provide for livable communities.," As it pertains to water systems,. Goal 14 also states
that "The type, location and phasing of public facilities and services are factors which should be
utilized to direct urban expansion."
BUJ rbar,i &,-owth Boundary
Goal 14 requires that Jackson County and the City cooperate in designating a UGB adjacent to the
City"s existing corporate limits. The UGB is based on a demonstrated need to accommodate long
range urban population and associated housing, employment opportunities, and other uses. The
current LJGB is shown in Figure 3-1.
Consistency
Goal 14 requires that the UGB "be adopted by all cities within the boundary and by the county or
counties within which the boundary is located, consistent with intergovernmental agreements."
Consistency with population forecasting and plans for the provision of urban facilities and services
are also required.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH3 20190605.DOCX(6/19/2019 8:02 AM) 3-1
CHAPTER 3 CITY OF ASHLAND WATER SYSTEM PLAN
CoIli u IIr IIIeIII
cy
Concurrency means that adequate public facilities and services be provided at the time growth
occurs. For example, growth should not occur where schools, roads, and other public facilities are
overloaded. To achieve this objective, growth should be directed to areas already served or readily
served by public facilities and services. When public facilities and services cannot be maintained at
an acceptable level of service, the new development should be prohibited.
Ci-ty of As�-fland Compre[)ensive Plan
The City's Comprehensive Plan, most recently updated in August 2016, describes the City's vision of
how growth and development should occur over a 20-year horizon. The Comprehensive Plan
considers the general location of land uses., as well as the appropriate intensity and density of land
uses given the current development and economic trends. The public services and transportation
elements ensure that new development will be adequately serviced without compromising
adopted levels of service.
Jacksor'i COUnty Comprehensive Nan
The County adopted its first Comprehensive Plan in 1972. Subsequent revisions resulted from the
County's first periodic review approved by the Department of Land Conservation and Development
(DLCD) on April 111 1994. Since then., further revisions occur as Jackson County continues the
on-going process of inventorying and analyzing data,, reviewing alternative solutions, and
responding to changes in local, regional, and state conditions to ensure that the plans and
regulations remain in compliance with the statewide planning goals and local needs. The current
version of the plan was adopted in 2015.
The County's Comprehensive Plan guides development in both urban and rural, unincorporated
Jackson County and designates land use in the unincorporated UGB. Similar to the City's
Comprehensive Plan, the County's plan contains planning for transportation and public facilities
and services in unincorporated Jackson County.
Land Use
The City limits currently encompass an area of'approximately 4,.240 acres,, or 6.6 square miles. The
City's UGB encompasses approximately 714 acres outside of the current City limits., for a total area
of 4,354 acres,, or 7.7 square miles. The existing retail water service area includes customers within
the City limits as well as some customers outside of City limits., with areas in the UGB requiring
annexation into the City limits for water service to be provided. The City's zoning, shown in
Figure 3-1, guides development within the City. Zoning in the UGB but outside of the City limits is
designated by the County., as shown in Figure 3-1.
Approximately 79.2 percent of'the area within the current City Limits or,Water Service Area is
designated for residential use, as indicated in Chart 3-1. Approximately 16.3 percent is designated
for commercial, industrial, and mixed use, 4.4 percent is designated for Southern Oregon
University, and 0.1 percent for open space.
3-2 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH3 20190605.DOCX(6/19/2019 8:02 AM)
CITY OF ASHLAND WATER SYSTEM PLAN LAND USE AND POPULATION
Chart 3-1
Zoning Inside City Limits
Commercial/I nduustria l/
Mixed Use
16.3%
Open Space
�j
o, 0.1
University
r
,r
i
ntJ4////�'"
(/J� (/J�
4 M 4/�////yyy{7
rir
Within the City's unincorporated UGB and outside of the City limits, approximately 88.1 percent of
the land area is designated for residential use, as shown in Chart 3-2. Approximately 8.3 percent of
the land area is designated for commercial use, and the remaining 3.6 percent is designated for
agricultural use.
Chart 3-2
Zoning Inside UGB (Outside City Limits)
Agriculture
l p iil ill
r
Commercial
8.3'%
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH3 20190605.DOCX(6/19/2019 8:02 AM) 3-3
2
CHAPTER 3 CITY OF ASHLAND WATER SYSTEM PLAN
'0 )U I a ti,o n
Household I rends
The City"s residential areas are comprised largely of single-family residences. The Census Bureau's
2015 American Community Survey (ACS) estimated a total of 10,372 housing units in the City,. with
9,446 occupied and 926 vacant. The ACS-estimated average household size for 2015 was 2.10
persons.
Existing and FLALAI,le City Population
The County has experience rapid population growth and extensive physical developments since
2000. The population of the County increased by approximately 18 percent from 2000 to 2016,
based on Portland State University's Population Research Center (PRC) estimates. In contrast, the
population of the City increased by only approximately 5 percent during the same period. Table 3-1
illustrates the historical population growth since 2000, with years 1995, 2000, and 2005 included
for refence.
Table 3-1
Population Trends within the City Limits
1995 17,.985
............................................................................................................................................................................................................................................................................................................................................................................
2000 19,.610
005 2 20,.880
--------------------------------------- ............................................................................ ----
2010 20,.095
2011 20.,225
.................................
2012 20,325
.....................................................................---------------------------------------------------......................................................................................................................................................................................................
2013 20,.295
------------------------------------------ -----------------------.......................................................................................................................................................................................................
14 20,340
20
------------------------- ............................................................-----
2015 20,.405
.............................................................................................................................
L 2016 20,.620
............................................................................................................................................................................................................................................................................
Projected future growth for the City limits and unincorporated UGB is shown in Table 3-2.
Estimated UGB and City limits population projections were provided on 5-year intervals by the PRC.
Projected population for intermediate years was calculated by assuming a uniform population
growth rate between the available PRC estimates for 2015, 2020, 2025, 2030, 2035, and 2040.
Therefore, the projected 2037 population was calculated by interpolating between the PRC"s 2035
and 2040 estimates.
3-4 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH3 20190605.DOCX(6/19/2019 8:02 AM)
CITY OF ASHLAND WATER SYSTEM PLAN LAND USE AND POPULATION
Table 3-2
Population Trends within the City Limits
2017 211162
....................................................................................................................................................................................................... -------------------------------------------------
------------------------------------------2018------------------------------------------ 211290-------------------------------------
------------------------------------------2019---------------------------------------------------------------------- 2101419
2020 21,547
....................................................................................................................................................................................................... ---- --------------
2021 21.,684
.......................................................................................................................................................................................................—---------------------------------------------------------------------------------
2022 21,821
.......................................................................................................................................................................................................—-----------------------------------
2023(+f years) 2100957
.......................................................................................................................................................................................................................................................--------
2024 22.,094
2025 2201231
2026 211252
....................................................................................................................................................................................................... -----------------
2027(+10►years) 22,474
..............................................................................................................................2028 2.,5 9 6
2029 2201718
...........................................................................................................................................................................—--------------------------------------------------------------------------------------
2030 22.,839
2031 22.,908
.......................................................................----------- -----------
----------- 2032 —-------22.,977---------------
2033 23.,045
..............................---------- -------
2034
23.,114
2035 23.,183
.........................--------------------------
2036 23.,213
.........................................................................-------------------- ......................................................................................................................................................................................................
2037(+20 years) 23.224
--------- ..........................................................-----------
Historic and projected population are shown in Chart 3-3. The population of the City limits is shown
for years 1995 to 2016, and the population of the City limits and UGB are shown for 2016 to 2037.
It is assumed that the entire UGB will be annexed into the City by the end of the 20-year planning
period as described in the City"s Comprehensive Plan.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH3 20190605.DOCX(6/19/2019 8:02 AM) 3-5
CHAPTER 3 CITY OF ASHLAND WATER SYSTEM PLAN
Chart 3-3
Population Projections
30,000
28,000
26,000 Base Line
Year: 2017
24,000
22,000
20,000
1 8000 20►16 to 2037:
City Limits and UGB
® 1 6,000 1995 to 2016:
95 to 2 16:,.,, l
m Population
141 City Limits ...............
I it
MENNUMUNRUJI
CL t
0 EPopulation
d 1 2,,000
10,
8,,000
6000
4000
2,,000
0 .......
C� (S
Year
Water Sys Lem Population
Because the City requires properties to either annex into the City or experience failure with their
existing private water system before water service is provided (unless unique circumstances exist),
the population inside the City limits is roughly equivalent to the total water system population. For
the purposes of estimating demands, the population projections in Table 3-2 will be used, with the
understanding that the entire UGB is not anticipated to annex in to the City until the end of the
City"s 20-year planning period. The system is expected to provide service to approximately 23,.244
customers by 2037.
3-6 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH3 20190605.DOCX(6/19/2019 8:02 AM)
y
a cl
............
...........
Z////////////'/'/'/'/'/'/...................../,/,/,/...........
................
W?
............
...........
a
frr YYY
t t
rr
r 'e' y
rr
[w' uu�uu �+J %Ius'naxwrr(n�bwayyry�u
e
`
/i/
///
NNN
"27141
tl r
r ± u
Yf YY Yl
Yu
J
` l
,.
a I
111
.
a � �„ �y
q Y. f
P "M1"
l
m l
Y
o-
rr
YYY � � �
l Y,
......
IN, CL
II` f
__Y Y°
CIII
" �r '`
Y k � I
� War Y� "," .. l a l
LL
l
I'
,^
R
ya
r, l Yd
.......... \
W .. rr YYl r
NO
ik
<<<
9
m Y Apr ry
Y
'rr
E f
JI`
r� Y
�r
r� d
r
�h`rr
�r
Y r
y� rrrr�
l
`
rY
4 � WATER DEMANDS
4uuuum
011111111111111111 E II D E M N D S
IntrodLXti on
A detailed analysis of system demands is crucial to the planning efforts of a water supplier. A
demand analysis first identifies current demands to determine if the existing system can effectively
provide an adequate quantity of water to its customers under the most crucial conditions,, in
accordance with federal and state laws. A future demand analysis identifies projected demands to
determine how much water will be needed to satisfy the water system's future growth and
continue to meet federal and state laws.
The magnitude of water demands is typically based on three main factors: 1) population;
2) weather; and 3) water use classification. Population and weather have the two largest impacts
on water system demands. Population growth has a tendency to increase the annual demand,
whereas high temperatures have a tendency to increase the demand over a short period of time.
Population does not solely determine demand because different user types use varying amounts of
water. The use varies based on the number of users in each customer class, land use density, and
irrigation practices. Water use efficiency efforts also impact demands and can be used to
accommodate a portion of the system's growth without increasing a system's supply capacity.
Demands on the water system determine the size of storage reservoirs,, supply facilities, water
mains, and treatment facilities. Several different types of demands were analyzed and are
addressed in this chapter, including average day demand, maximum day demand, peak hour
demand, fire flow demand, future demands, and a demand reduction forecast based on the Water
Use Efficiency program.
Current Population and Service Connect I ons
Wa L&r Use Oassifications
The City has divided water customers into eight different classes for billing purposes. These classes
are: 1) Single-family; 2) Multi-family; 3) Commercial/Residential.; 4) Commercial; 5) industrial;
6) Municipal; 7) Governmental; and 8) Irrigation. The demand analysis that follows will report on
the water use patterns of these eight user groups.
Residential Population Served
The population within the City limits was 20,.620 in 2016, based on estimates from the Portland
State University PRC. Chapter 3 contains a more detailed discussion of the City's population and
household trends.
As shown in Table 4-1,,the City provided water service to an average of 8,,796 connections in 2016.
Approximately 7,826 connections (89 percent) were residential or mixed commercial/residential
customers, 593 connections (7 percent) were commercial customers, Ill connections (I percent)
were municipal or governmental customers, and the remaining 265 connections (3 percent) were
irrigation connections. Multiple multi-family residential units (units represent individual
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM) 4-1
CHAPTER 4 CITY OF ASHLAND WATER SYSTEM PLAN
apartments, condominiums, or other components of a multi-family dwelling) are served by each
multi-family connection, as shown in Table 4-2.
Table 4-1
Average Annual Metered Consumption and Service Connections
Single-family 61957 61964 71000 71022 71068 71105 71127
............................................................................................................................................Multi-family 589 597 599 603 604 603 619
Commercial/Residential 58 62 62 65 72 76 80
Commercial 579 581 588 586 590 590 593
Industrial 3 2 2 0 0 0 0
Municipal 16 16 15 15 29 63 65
Government 96 101 106 98 101 63 46
Irrigation 372 376 339 208 201 201 265
Totals 81671 81699 81711 81597 81665 81701 8;796
....................................................................................IIIIII IIIIIIII .................
Single-family 48811001190 47410701759 506,821,036 533,363,462 48119661672 45515361334 461;1251696
Multi-family 15216111315 14612761774 1581560,229 16316591886 15910441218 15213231802 14615291929
Commercial/Residential 819091187 91172988 917431138 1019801461 1015421835 1019511526 1110101907
Commercial 13611331308 137,649,340 14112141766 140,110,401 13415571956 13614431256 13612451374
Industrial 11022 409 275 0 0 0 0
Municipal 617841577 711551087 6,676,933 710911256 718181924 6111211481 72;9161421
Government 4110421636 4117191040 4419641433 4911581394 7219901366 5516811857 33;0831654
Irrigation 13213251776 115,967,240 13916131067 13719131590 18619281216 17713441959 20410991607
Totals 9651908112 932,011,636 1,007,593,876 1104212771451 1105318491187 1104914031215 1;06510111589
Single-family 192 187 198 208 187 176 177 189
Multi-family 709 671 723 743 722 693 647 701
............... .....................................................................................................................................................
Commercial/Residential 418 409 426 466 401 395 375 413
Commercial 644 649 657 656 625 633 627 642
Industrial 1 0 0 N/A N/A N/A N/A 1
........................................................................................................................................
Municipal 11150 11225 11190 1,295 734 21662 31045 1;614
Government 11168 11128 11164 1371 11978 21412 11958 1597
.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Irrigation 974 844 11124 11815 21545 21418 21106 1;690
Totals 305 294 317 332 333 330 331 320
4-2 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER DEMANDS
Table 4-2
Multi-family Units
III III
2010 4,571 91
..................................................................................................... ......................................................................................................................................
2011 4,.629 87
.....................................................................................................
2012 4,.649 93
..................................................................................................... ...........................................................-------------------------------
2013 4,.678 96
..................................................................................................... --------- ....................................................................................................................................................2014 4.,681 93
..................................................................................................... ------------------------------------------
41673 2015 89
..................................................................................................... --------- ...................... ...................................................................................................................................................
2016 41802 83
.....................................................................................................------------------------------------------------------ ................................................................................................................................................................................
Average 4,.669 90
........................................................................................................................... -------------------L.............................................................................................................................................................................................................................
Existing Water Demands
Water CUnSUrnp,tion
Water consumption is the amount of water used by all customers of the system,, as measured by
the customers meters. Table 4-1 shows the historical average number of connections, average
annual consumption, and average daily consumption per connection of each customer class for the
City from 2010 through 2016.
The number of multi-family connections is less than the number of units served since one
connection typically serves several units. Table 4-2 shows the historical approximate total of
multi-family units, and the approximate average daily consumption per multi-family unit within the
City"s water service area from 2010 through 2016. Total multi-family units are based on the ratio
between multi-family units and multi-family connections., current as of June 21., 2017.
As shown in Chart 4-1,, the Single Family class represents approximately 81 percent of all
connections, but only 43 percent of total system consumption,, as shown in Chart 4-2. This is due to
the lower consumption per connection of single-family residential customers as compared to other
customer types. As shown in Table 4-1, single-family residential customers use an average of
approximately 189 gpd per connection, compared to multi-family customers that use an average of
approximately 701 gpd per connection., and commercial customers that use an average of
approximately 642 gpd per connection. Since multiple units are typically served by one multi-family
connection.,Table 4-2 includes the average daily consumption per unit for the multi-family class,
which historically has been approximately 90 gpd per unit. The lower consumption of multi-family
customers is expected since the average household size of multi-family units is usually less than the
average household size of single-family units, and multi-family units consume considerably less
water for lawn and garden maintenance. Additionally, the higher consumption of commercial
customers is expected since these customers include the system's highest individual water users.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM) 4-3 IN I
CHAPTER 4 CITY OF ASHLAND WATER SYSTEM PLAN
Chart 4-1
2016 Water Connections by Customer Class
� Il�s��i�IIII uuuuuuuuuu�
,Municl ral Residential
lrrr lar� �c rr rr mental
3
Chart 4-2
2016 Water Consumption by Customer Class
1
e
Governmental
rnm+ntol
3
Table 4-3 shows the largest Water users of the system in 20:16 and their total amount of metered
consumption for the year. The total water consumption of these 20 water accounts represented
approximately 13 percent of the system.0s total metered consumption in 2016.
4-4 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER DEMANDS
Table 4-3
2016 Largest Water Users
City of Ashland,Water Department.,Tracking 2071 N. Hwy 99 55,471,845
..................................................................................................... .....................................................................................................................................
Ashland Parks Department 551 Clay Street 111424,503
..................................................................................................... ------------------- ..........................................................................................................................................................................................................................................
Ashland Parks Department 526 N. Mountain Avenue 91906.,512
.....................................................................................................------------------------------------------------------------------------------------------------------------------------- —--------——----------------------------------------
City of Ashland Mountain View Cemetery 440 Normal Avenue 91519.,796
..................................................................................................... ____________________________________
CPM Real Estate Services, Inc. 321 Clay Street 81940,.844
..................................................................................................... ......................................................................................................................................................................................................................................................................................................................................................
Southern Oregon University 1361 Quincy Street 81168.,908
..................................................................................................... ------------------------------------------------------SOU/Physical Plant Department 1165 Ashland Street 81146,.468
..................................................................................................... ...................................................................................................................................................
Ashland Community Health Care System 280 Maple Street 81108.,619
......................................................................................................-------------------------------------------------- ...................................................................................................................................................
Ashland Springs Hotel L ?525 A��har�d Street 61294.,420
.....................................................................................................---------------------------------------------- .................................................................................................................................................................................
Southern Oregon University 438 Wightman Street 51483,,408
.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Ashlander Apartments 2234 Siskiyou Boulevard 51426.,740
....................................................................................................................................................................................................................................................................................................................--------------------------
Ashland Parks Department 1699 Homes Avenue 51262.,030
..................................................................................................... ...............................................................................................................................................................................................
Ashland Public Schools 1070 Tolman Creek Road 41957.,894
..................................................................................................... —------ ....................................................................................................................................................
Ashland Assisted Living LIC 950 Skylark Place 41921.,167
......................................................................................................---------------------------------------------- ...................................................................................................................................................
Ashland Springs Hotel 212 E. Main Street 31964.,400
..................................................................................................... -------------------------------------.........................------------ .....................................................................................................................................................
Oregon State Hwy 2488 Ashland Street 31912,.414
......................................................................................................------------------------ —---------- ....................................................................................................................................................
Windsor 2520 Ashland Street 31721.300
..................................................................................................... .........................................................-------........................................................................................................................................ ...................................................................................................................................................
Ashland Parks Department 2 Winburn Way 31698,#860
......................................................................................................------------------ ...................................................................................................................................................
Ashland Springs Hotel 2525 Ashland Street 3,640
.067
067
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
2016 Largest Water Users Total 176.,67 ,4443
..................................................................................................... -------------------------------------..........................................................................................................................................................................................................................................................................................................................................................................................................................................................
2016 Water System Total 11065,.011.,589
..................................................................................................... ----------------------------------------------------------------------
..............fercent of Total 17
%
Residential demand varies throughout the year,, typically peaking in the hot summer months. Other
customer types often peak at different times or have different peaking factors because their uses
differ. The demand of single-family residential customers in the City generally peaks in the summer,
as shown in Chart 4-3. Multi-family residential, commercial/residential, and commercial
consumption also typically peak in the summer, as shown in Chart 4-4., Chart 4-5., and Chart 4-6
(note that the scales vary for each chart for clarity). Industrial consumption,, shown in Chart 4-7, is
very low during the 2010 to 2016 timeframe, and includes an unexplained peak in September of
2010 that is likely an error or anomaly. Municipal and governmental consumption, shown in
Chart 4-8 and Chart 4-9, do not follow consistent patterns of use from year to year. Irrigation
consumption, shown in Chart 4-10, is close to zero in the winter and peaks during the hot summer
Z:\130THELL\DATA\C0A\1016-096 WIMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM) 4-5 IN
CHAPTER 4 CITY OF ASHLAND WATER SYSTEM PLAN
months. The City reads most meters every month as shown in Chart 4-3, Chart 4-4, Chart 4-5, Chart
4-6, Chart 4-7, Chart 4-8, Chart 4-9, and Chart 4-10.
Chart 4-3
Historical Monthly Single-Family Consumption
100
80
70
C pub;
� / s
60
C
50
//yv
CQ
„loo,
00
30 t1S m U is i
% yy/� �i ro %!H PVWI41NWWiAD •r W�'N'�MMm.
YM�I R"YAI�jIAAId�IS GYM/ ;�fliJlWWWb'�Y� /..
ILL
oil
/iM�rt 9L '
20
�— 10
......... ......... Y I ............................
1..............................�. Y....... ........ 1 ......... ......... .......
Nam , ,
2010 2011 o"°2012 —201 2014 201 —2016 .. Average
J`
t � N�NNNNIINN N711N171"NSN"N71179"N71179"N71179"N711799�^71171)��NNyNN 711NNl�ly%S"1JS"y%NNN�I NNNII NNuyu B"`s71,B"`s71,9,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,y1N1�NNl�1NyyNNl�1NJ>Nl � I�,I�,N,yNl�,yl,,iY,J7,N1 I f�Y,7"➢N"`N ��I�,NP"P,P,"`,"PNi,G�,,N,l",N NNIl N,C7�NNCC7,CN,yIYbNY,YPYbbY,YPYbbY,YPYb 71717�777N�7�771i"1;� ?;�°��NIN,N,Chart 4-4
Historical Monthly Multi-Family Consumption
25
�iryry
20 _ v _v v _.v _ v.....dv..... _m.....
_ _.v a° n
NO
u/
C
m m uu
— 15
Cyt
�.
10
01
11
C I �'
C 10 �. f pr„dn
Nate
ui�ioiur 2010 2011 °°°AJik/"""""2012 11.1110°°°°--2013 2014 2015 2016 Average
���rrur�it ri����iriri�m��r�����rr i it uro urorJ���Hrmmwmrmro oir oiorm i urirJro oir uro urHrm«�u i u u i��i ru oroi ua���it ii��ru uro urorrurrrJ��r oir�u�ru�o uror�ru rrud�i��it ri or�ru rrrr oiru u i ur�rJ o�irirmur or o��ri u i u�ri uo ox ox on omio�n ii ii ii o0 ou wormo ui�i J i wii u i urirJro.moo ro rr�i ii ri it ioio ro mo omoi�n it ii i�ri it imoo ro mo orc Jiro rurmuuo nr�ru rror ii��it ri����mrrror�ru„�it it ri����irrroi�ru rriri����it��roo ro uo ou i��ri it�i i�ro i moo wru uri�ur�i i�ri it�i io ro mo oirorrJi����it rroi ru irrr tiir�u i uroi mro oir�r nr�ri it ri����it ri�,
y 4-6 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER DEMANDS
Chart 4-5
Historical Monthly Commercial/Residential Consumption
2.50
C
t" 2.00aNry88N
u
i
�rr�
^ ay^rc
ld v
a 1.50
w+w.
� I i i �Ilu �� I �`p6�NkNryw^�OON�Nii��owo
wwww
1.00
� 41y
ww.
^4jN�,N „rr
i.l
0.50 _ �mmumw
000i�immmumu� '
C oi<
��( �r�Niiii 1111UJJJ�J��l�lfl�w�yi+�'���nwwWaF.,11P�r�aarm�
0.00
el. 021
2010 2011 ii 2012 ',*,-,2013 2014 2015 —2016 Average
NDMOND N
r s r Y7JYN7yPN�y7JPN�yNNJ7���iyyy77y�i�N�y�I��N�y�I��N�1111�1�1�1111�11�NJ7J7 P7JYJ�NY�PN�y7JPN�y7JPN�17J,�7,7J7J,1y11�y77y1��N�y�I��J��s7Js7� I I �7 �1 ,,,,,,,,JYY9JYN�y111�yy�l�yNly�l�yNly���Nly�l�yN�yJy7Jy77ys7Jy77ys7Jy7717Js7�ys7Js7�ys7J»i�y�l��N�y�I��N�y�I��N�y�Y'���D1�7ys7Jy77ys7Jy77ys7Jy77ys7Jy77ys7Jy77ys Chart 4-6
Historical Monthly Commercial Consumption
2s
20
N -n Nt
C 4M„p
NN° N,M1
C
id MN�jf�w�mm iwamw� nn��
wwww y
ww�wrw
wwwr
15 Ilk,
w 1 N
www
� r
CL
EIIIUI�III�I� �i ww ,����uMf
( C 10 ..... ..._ ___ ..,... _.,. o
III'1p,'/
ffew. ill/1,, .i i lam"' i I i
0 ..............
1.90--2010 2011 i, 2012 "°°2013 ° °°2014 2015 2016 Average
aer�rrarrarraaaaarrarrarrarrarrarra�« �w�w�w�w�uwr�w;�;�;wcwr2Rr2Rr2Rr2Rr2Rr2Rr2Rr2Rr2Rr2Rririririr2Rr2Rr2Rr2Rr2Rr2Rr2Rririrarrar^ririririr2Rr2Rririririririririrm^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^mmr2�mr2Rr2Rr2Rr2Rr2Rr2Rr2Rr2Rr2Rr2rr2Rr2Rr2Rr2Rr2Rr2Rr2Rr2Rr '�u�w�w�wwwRr2Rr2^Rr2 Rr2Rr2Rr2Rr2Rr2mr2^m^m^m^m^m^m ^m^m^m^m^m^m^m^m����^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^m^r
1 u f P ^m^m^mid
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM) 4-7
CHAPTER 4 CITY OF ASHLAND WATER SYSTEM PLAN
Chart 4-7
Historical Monthly Industrial Consumption
900 _..
F
800 m
tr
f 'J
� 1
1 ,
700 tl,
f
f
�f
600
f
500
400
c
u
300
200
c
100
drop
i
f
Oii
I
n,
,�..�
02 V
2010 2011 ii 2012 °° 2013 2014 2015 2016 Average
II I�f <<< L 1f� II III LIIf�<<I� n 111ff11ffllff� I I IIIIffL<<<<L< <III�IIII-ffIIII n nnnnnn n o00000o n n� N N If V w
f P N Y7JNN7y>N�y7J>N�yNNJ7���iyly77y�i>N�y>l�>N�y>l�>N�1111�1�1�1111�11�NJ7J7>7JNJJNyJyH17Jy,9 J>7�y>7J>7�1""11�1"1"1"11Jy11�9J7J797J>7�y>7J�1��>l�>N�y>l�>N�y>yy77yyy1y1�11 �,Y�1�iiN7JfNJYf7JfNIJiI�P7JP�7MP�PJNiJYP1JPyJP�7 >7�y>">7Jy77y>7Jy77y>��Nly>l�yNly>l�yNly>l�yNl Ni7JNN7y7JNN7y7JNN7y7JNN7y7JNN7y7JNN7y1"1N�JYJ7�`J7NJfNN.1NYJNyJN�`J�JJ�y1.7>IYN1�JHiT.9h�yJ7yJ,1J.11JP�i97117y7NyJ�1�`JNNyN�.D,; %l���Jit�iH�`i�1,NY7NY.P�17y71771.�1yy7177;YJ�17.TJ7TJ7�l.N��N��N1'�1�y�N�JN�IN�JN�JN1'JN�JN,
Chart 4-
Historical Monthly Municipal Consumption
12
10
f
c
6
u°
rG
CL 4
y_
ca
J
w r r�iavuxw.wioi nronw,».. m x rx
V�����un����,,;1,°"�m�yJlJylJ�l )l��N�rNwulvNm111°"'""»,"»iii/i imiii�iiiii��1J�JJ�nanluwwwwrre�Nr((�w' r ��N1JYlmlm»vnln�n „».�„°�
//� w (�nainn ww?Nr� mnuowNDYI? �a waow a; �Y�SYIYI����fIJ/dDiWM1I�'P6(dff(� �%1 r1 mmuw mi �N
Arena ni�m�Nu�wwwaaW'rnu�b��,o0yfi'vfuidwwmrvwmw—A 4hON1UDWJ'iNi l4�urn ,..iowomiow MWtif f�iu(�'I u�aamuwrwwDrvr>+wrofv'nwl��.�� N of I �aR�,w,nrrtfrwaW„rrn aarnNw,wnr�(��
dr
2010 2011 arc°°°2012 ,elp„°°°.2013 2014 2015 2016 Average
Ww ONONONONONONONONONONONOfIfIfNONONONONONONONONONONNO�N f i RNRN RNRNRNRNRN OIN ONONONONONONONONONONONOWOWO NONONONONONONONONONONONONONONONONONONONONONONONONONONOf V I Pf7Pf7Pf7Pf7Pf7Pf7Pf7Pf7Pf7 J 0 Y Jr N
4-8 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018—WMPCH4 20190605.DOCX(6/19/2019 11:11 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER DEMANDS
Chart 4-9
Historical Monthly Governmental Consumption
12 _
10
C
is
«6 8 _._ _ _
i
0
td ............. � nq .....�IO�tpmh
IIIII111'1''1..............."1 1%1'
�N
6U
�V �m"wr
ni .iom g�% ,�. k4k-0(n"ai °i°r"'/ �imuaV pp8 1D1U!IIUI m��"ai
n
00,
000 G�
"10 �' o�w
1
,u
( w« ^m x v�� � �� � mp��mh
mpupn
�Nl� n�91Vu
d °•
C3 2
t—
0
Oaf ,, Ns�� p
2010 2011 ii 2012 ',*,-,2013 2014 2015 —2016 Average
NDMOND N
r s r Y7JYN7yPN�y7JPN�yNNJ7���iyyy77y�i�N�y�I��N�y�I��N�1111�1�1�1111�11�NJ7J7 P7JYJ�NY�PN�y7JPN�y7JPN�17J,�7,7J7J,1y11�y77y1��N�y�I��J��s7Js7� I I N �1 ,,,,,,,,JYY9JYN�y111�yy�l�yNly�l�yNly���Nly�l�yN�yJy7Jy77ys7Jy77ys7Jy7717Js7�ys7Js7�ys7J»i�y�l��N�y�I��N�y�I��N�y�Y'���D1�7ys7Jy77ys7Jy77ys7Jy77ys7Jy77ys7Jy77ys Chart 4-10
Historical Monthly Irrigation Consumption
60
50
C �Wwaaio
I V I
40
tl
CL
30
C
�db
20
bo f"
Of
.
k
fly
0 ... MOON
rai �:. � ......... � ........ ......... ..................................... ......... ........ f........ ....... .... ........F
erc°2010 2011 ,<<<<2012 2013 2014 2015 2016 Average
aer�rrarrarraaaaarrarrarrarrarrarra�« �w�w�w�w�uwr�w;�;�;wcwr2Rr2Rr2Rr2Rr2Rr2Rr2Rr2Rr2Rr2Rririririr2Rr2Rr2Rr2Rr2Rr2Rr2Rririrarrar�ririririr2Rr2Rririririririririrm�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�mmr2�mr2Rr2Rr2Rr2Rr2Rr2Rr2Rr2Rr2Rr2rr2Rr2Rr2Rr2Rr2Rr2Rr2Rr2Rr '�u�w�w�wwwRr2Rr2�Rr2 Rr2Rr2Rr2Rr2Rr2mr2�m�m�m�m�m�m �m�m�m�m�m�m�m�m�����m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�m�r
1 u f Chart 4-11 shows the ratio of monthly consumption to average annual consumption for each of the
eight customer classes. The relatively high summer peaking factors of the City's residential and
irrigation customers are illustrated clearly in Chart 4-11. The extremely low consumption of the
City's industrial customers during the 2010 to 2016 analysis period results in exaggerated peaking
factors for this customer class, which is presented for reference only.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM) 4-9
CHAPTER 4 CITY OF ASHLAND WATER SYSTEM PLAN
Chart 4-11
Average Monthly Peaking Factors by Customer Class
.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
7.0
6.0 -- -- .www...... _...
0
u
oa
c
M
a�
a
c
0
E 4.0
V
M
0 3.0
Q i
a�
2.0
C0 /e fuuuuuul
G
w` _OPpWIVINUUU
Ww/ 000
pNtimnnN''N'IN'N'NM�mN
II IINIIIIIIUIUIUIUIIIIUI UNNNINNININNI 00 IIIIIIIIIIIII
NNINIIOUNNIIINNININUII IIINNINNININIOMNINUU IN
L
Imuuuuuul nnmN��
Im i
IUllI! IIIIIIII NI
N
N lollllllol '�
lG lllf� I I1111 f/ p 111 111 f f /
.,. .,.,.,., . ............... ............... ................ ..,.,.,.,.,.,.,......., .,.,.,., .......,.,. ....i.:l.. ..,..,. � i � / .,.,.,.,.,.,.,. ...,..,.,.,.,.III .......... .....,.,.,., .,..,.,.,.,.....� .� � ,,,,y ,.�� �rlrv,
� INllllli �!
f� ��'n ���i„ ,u✓}///
IIII INIIUINN IUIIUIIUNpINN NN Ji
IpNININNImuImluNUNlp NNmulolol NIUNIN IIIIIIIIIIIIII
mlll IINNlomuummlml mnnmmlmmmlolNuumuuulull°101 � 'INumumluuuu
,.Ioo,
iu Il�pllll
u uvll mmouulm u m u u u um umlouuuumuu
��� Sao �\ �0 fie" 0''
Average 2010-2016 Singh-family Peaking Factor Average 2010-2016 Multifamily Peaking Factor
Average 2010-2016 Commercial/Residential Peaking Factor Average 2010-2016 Commercial Peaking Factor
Average 2010-2016 Industrial Peaking Factor Average 2010-2016 Municipal Peaking Factor
Average 2010-2016 Governmental Peaking Factor .......Average 2010-2016 Irrigation Peaking Factor
Water t Apply
Water supply, or production, is the total amount of water supplied to the system, as measured by
the meters at source of supply facilities. Water supply is different than water consumption in that
water supply is the recorded amount of water put into the system and water consumption is the
recorded amount of water taken out of the system. The measured amount of water supply of any
system is typically larger than the measured amount of water consumption, due to non-metered
water use and water loss, which will be described more in the Water loss section. Table 4-4
summarizes the total amount of water supplied to the system from 2010 through 20: 8.Produetion
data for the years 2017 and 2018 were provided in early 2019 during completion of this Plan and
are included herein. in general, the amount of water consumed by the City's customers has grown
slightly from 2010 to 2018. This slight increase can likely be attributed to development and the
small population increase the City has undergone during this time period.
4-10 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER DEMANDS
Table 4-4
Historic Water Supply
201 2.60
..................................................................................................... .....................................................................---------------- ...................................................................................................................................................
2011 943,421,100 11795 2.58
.....................................................................................................---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2012 9681775,300 ,1843 2.65
..................................................................................................... ...............................................................................................................................................................................................................................................................................................
2013 11058,786,700 21014 2.90
..................................................................................................... ......................--------- ....................................................................................................................................................
17840 2.65
2014 96773357304
..................................................................................................... ......--------- ....................................................................................................................................................................................................................................................................................................................
2015 98879017814 1 11881 2.71
..................................................................................................... ----------------- ----------
2016 1700070347998 17903 2.74
......................................................................................................-------------------------------------------------- ----------------------------------
2017 1705478647551 2,007 2.89
.....................................................................................................---------------------- ----------------------------------
...................................................................................................................2018 ................L_1705774997874 2101-2----- 2.90
....................................................................................Like most other water systems,,the City"s water use varies seasonally. Chart 4-12 shows the
historical amount of water supplied to the City"s system for each month from 2010 to 2016.
Chart 4-12
Average Monthly Peaking Factors by Customer Class
.......... .....................................................
180
„ti.............."
160
140 .............
�r
011100,0�0,111111�
12U
100
80
-0
BMpNM
4-0 40 ,
10puWom
. ....
20
0
2010 ...........Adak............2012 2013 2014 2015 —0-2016 Ave rage
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM) 4-11 N1 I
CHAPTER 4 CITY OF ASHLAND WATER SYSTEM PLAN
As shown in Chart 4-12, water supply increases significantly during summer months, primarily due
to irrigation. The City's highest water use typically occurs in July and August. On average, the
amount of water supplied during these 2 months is approximately 30 percent of the total supply
for the entire year.
Chart 4-13 shows the monthly water supply by source for 2015, a drought year when water was
supplied from all three of the City's supply sources. Typically, water is supplied only from the
Reeder Reservoir, but water is supplemented from TID and the TAP BPS during drought years to
meet demand. Chart 4-14 shows the monthly water supply for 2010, a non-drought year when
water was supplied only from the Reeder Reservoir.
Chart 4-15 shows the annual water supply by source from 2010 to 2016. The years 2013 to 2015
reflect the City's supply data during years where due to drought or other conditions., TID and the
TAP BPS were used to meet the required water demand.
Chart 4-13
2015 Monthly Water Supply Source
..........................................................
140
120
....................................................................................................................................................
100
cn
----------------------------------------------------------------- ------ ------ ------ ------------------------------------
0
80
.................................................................................................................................................................. ............. .......................
so
60 ........................
o
AN,
//////i
40 ...........................
............... .............. ............. ............ ............. ...............
o
20
, �
r/r/F
0 .......... ......................... .......................11,11,11,111,111,111,'ll""I'll""I'll'I.......................r............................................................. ........................................................ 0000,
13k zk 6 (b (2�
0
0
Reeder Reservoir ETID 11110.TAP BPS
4-12 Z:\130THELL\DATA\C0A\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER DEMANDS
Chart 4-14
2016 Monthly Water Supply Source
.........................................................................................................................................................................
160
...............
140
........................
120
................................................................................................................. .................. .................
100
0
m
Q
80
0
60
...........
CL
CL 40o
-
20
o
0 -------T-------------7.........................................7................................................................................................................r----------------T................................................................................................................. ............................................... ------------
ZII,
Reeder Reservoir
Chart 4-15
Annual Water Supply by Source
-------------------------------------------------------------------------------------------------- ...... .........
1200 -
1000
800
4A
C
0
(9m 600
so
-________________-_______-w ............ .......... --------------------------
-tVU ...........
CL
CL
200 Al-
0
Reeder Reservoir T I D E TAP BPS
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM) 4-13
CHAPTER 4 CITY OF ASHLAND WATER SYSTEM PLAN
Wat..-Ier I oss
The difference between the amount of water supply and the amount of authorized water
consumption is the amount of water loss. There are many sources of water loss in a typical water
system, including water system leaks, inaccurate supply metering., inaccurate customer metering,
illegal water system connections or water use, fire hydrant usage, water main flushing, and
malfunctioning telemetry and control equipment resulting in reservoir overflows. Several of these
types of usages, such as water main flushing and fire hydrant usage, may be considered authorized
uses if they are tracked and estimated. Although real losses from the distribution system, such as
reservoir overflows and leaking water mains, should be tracked for accounting purposes., these
losses must be considered water loss.
A comparison of the City"s water production/supply totals with consumption totals for the years
2012 through 2018 shows that for the year 2012, metered consumption exceeded metered
production. This is likely due to incorrect accounting and results in the calculation of a negative
water loss percentage for this year, as shown in Table 4-5. Data for the years 2010 and 2011 also
appeared incorrect and are not included herein. The City updated its calculation method and
provided updated data for the years 2014 through 2018 as shown in the table. For the last two
years, which likely are more representative of the actual system,, water loss is estimated at 7
percent.
Table 4-5
Water Loss
111111111111111,Illl,niiiii 0
Authorized Consumption(AC)
Metered Customers Use(gal) 1100715931876 1,042,277,451 90311941843 92115751446 96110521470 95113481523 9621416,066
Total Authorized 1 007 593 876 1 042 277 451 912 487 938 918 202 115 963 962 674 957 348 419 9704621679
Consumption(gal) 1 1 , 1 1 , 1 1 1 1 1 1 1 1 1
Total Production(TP)
Total Production Supply(gal) 968,775,300 11058,768,700 96713351304 98819011814 1100010341998 110541864,551 1105714991874
Water Loss(TP-AC)
Total Water Loss(gal) -3818181576 16,509,249 5418471366 7016991699 3610721324 9715161132 871037,295
Total Water Loss -4.0% 1.6% 5.7% 7.1% -3.6% 9.2% 8.2%
Rolling 3-year Average Water -2% 0% 1% 5% 5% 7% 7%
Loss(%)
The City intends to continue to reduce the amount of water loss in the system through managing
leaks and by ongoing pipe replacement. The City will also continue to improve the tracking and
reporting of production, consumption, and other authorized water uses (such as hydrant flushing),
including coordination with the fire department.
Per Capita Dernands
Table 4-6 presents the computation of the existing system per capita demand based on 2016 data.
As shown in the upper portion of the table, the total residential population served by the City's
4-14 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER DEMANDS
water system in 2016 was approximately 20,620. This population served, and the City's total water
consumption in 2016, were used to arrive at the existing per capita demand of 141 gpd.
Table 4-6
Historical Average Daily Demand
(IIIIIIIIIIII IIIII�IIIIIIIIIIII IIIIIII IIII��IIII � � � �
Calculated 2016 Residential Population Served 20,620
.............................................................................................................
III IIIIIII IIIIIII IIIIIIIIIIII IIIIIII �' � �
2016 Total Annua...................................................l Pro...............................duction...................................................(...ga..........l...) 1,...................................................................................................................---------- ......................00,034,998
...................................................................................................................................Existing Per.......................Ca..........p..ita.............. Deman..................................................d (..g..p..d../ca.................p...ita.................) 133
As shown in Table 4-3, in 2016, the Southern Oregon University and the City of Ashland Water
Department accounted for approximately seven percent of the City's water consumption. Since
these customers are not anticipated to annually increase their consumption in the future, the use
of the existing system per capita demand of 133 gpd would not be accurate for projecting future
demands. Therefore, an additional computation of per capita demand was performed to provide a
more accurate estimate for use in forecasting future water demand. The computation of future per
capita demand shown in Table 4-7 is based on a reduced proportion of demand that is likely to be
more representative of the future type of demand to occur in the City's system. Specifically, the
demands for the City of Ashland Water Department and the Southern Oregon University were
excluded from the total annual consumption, and an adjusted annual consumption was calculated.
The estimated per capita demand of 123 gpd is used later in this chapter to forecast water
demands in future years based on future population estimates.
Table 4-7
Future per Capita Demand Projection
IIIIIIIIIIIII(IIII IIIIIIIIIIII(IIII IIIIIIIIIIIII, 4 01
. ' �
Calculated 2016 Residential Population Served 20,620
III IIIIIII IIIIIII IIIIIII III IIII�IIII
2016 Total Annual Consumption (gal) 1,000,034,998
.................................................................................................................------------------------------------Less Annual Demand of City of'Ashland Water Department and Southern Oregon 74,828,409
Universit.................................................................................................................-y not Representative of' Future Users (gal)
2016 Net Annual Consumption-----------------------------------------A----dj--usted for Future Anticipated Users (gal) 925,2061589
.................................................................................................................--------------Estimated Per .Capita Demand for Future Demand Projections (gpd/capita) 123
Derriands Per Pressure Zone
Table 4-8 shows the average demand of each of the City's 14 existing pressure zones. These data
were developed using the City's hydraulic model estimated demand allocations. The City's two
largest pressure zones, the 2425 Crowson Zone 1 and the 2170 Granite Zone 1, account for
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM) 4-15
r�mw m',9 tO :1,2m , p
CHAPTER 4 CITY OF ASHLAND WATER SYSTEM PLAN
approximately 60 percent of the total system demand. Figure 2-1 in Chapter 2 displays the City's
pressure zones.
Table 4-8
2016 Demands by Pressure Zone
2170 Granite Zone 1 42573337455 809 42.5%
....................................................................................................................................................... ............................................................................................................................................
1980 Granite Zone 2 5879857041 112 5.9%
....................................................................................................................................................... --------------------------------------------------...........................................................................................
2060 Granite Zone 3 5670847301 107 5.6%
....................................................................................................................................................... ——--------- ..................................................................................................
2425 Crowson Zone 1 20178867479 384 20.2%
....................................................................................................................................................... ——--------- --------------------------
2200 Crowson Zone 2 5571647066 105 5.5%
........................................................................................................................................................----------------- ---------------------
2270 Crowson Zone 3 1770747354 32 1.7%
.......................................................................................................................................................................................................................................... .........................................------------------------------------------------
2640 Crowson Zone 4 271707553 4 0.2%--
2270 Crowson Zone 5 178607474 4 0.2%
....................................................................................................................................................... --------- ..................
2290 Crowson Zone 6 1457957�217 278 14.6%
........................................................................................................................................................----------------- ——————————----------------------------
2570 Crowson Zone 7 607015 0 0.0%
----------------------------------------- ----------..................................................................................................... ..................................................................................................
2610 Crowson Zone 8 379717013 8 0.4%
....................................................................................................................................................... ----------------------------------------------------------------------- ...................................................................................................
2586 Fallon Zone 1 370857787 6 0.3%
........................................................................................................................................................-----------------
2470 Fallon Zone 2 51186,322 10 0.5%
....................................................................................................................................................... ............................................................................................................................................................................
2559 Alsing Zone 1 237215,920 44 2.3%
....................................................................................................................................................... ------------------------------......------ ............................................ .........................................................................................................................................................................
Total 1,000,034,998 t 17903 100.0%
Equivalent Residential Units
The demand of each customer class can be expressed in terms of ERUs for demand forecasting and
planning purposes. One ERU is equivalent to the amount of water used by a single-family
residence. The number of ERUs, represented by the demand of the other customer classes is
determined from the total demand of'the customer class and the unit demand per ERU from the
single-family residential demand data.
Tables 4-9A,4-9B, and 4-9C present the computed number of ERUs for each customer class from
2010 through 2016.The demands shown are based on the consumption totals of each customer
class. Because the City revised its accounting methodology and provided updated total
consumption data as shown in Table 4-4, the sum of the consumption data for each customer class
shown in Table 4-9C does not match the total consumption data shown in Table 4-4. This does not
significantly impact the ERU calculation. In years where there were active industrial connections,
their use was minimal and represents less than I ERU for the given year. The average demand per
ERU from 2010 through 2016 (7-year average) was 189 gpd.
4-16 Z:\130THELL\DATA\C0A\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER DEMANDS
Table 4-9A
Equivalent Residential Units
2010 6,957 488,1001 190 192 61957
.................................................................................................................................................................................................................................................................... ..............-----------------------------------------------.................................................................................................................................................
2011 6,.964 474,070.,759 187 61964
.................................................................................................................................................................................................................................................................... ........................... ------------------......................................................................................................................................................
2012 7"000 506,821.,036 198 71000
.................................................................................................................................................................................................................................................................... ----- ......................................................................................................................................................
2013 7,022 533,363.,462 208 7;022
.................................................................................................................................................................................................................................................................... ---------- ------ ...................................................................................................................................................
2014 � 7,.0 6 8 481,966,672 �� 187 71068
........................................................................................................................................ .................................................................................... ---------.................................................................................................................................. .......................
2015 71 105 455,536,334 176 71105
......................................................................................................---------------------------------------------------- ..............................................................................................................................................................
2016 71127 4611125,.696 177 71127
2010 58 81909,187 192 127
..................................................................................................... ----------------------------------------------------------
2011 62 9,,172.,988 187 135
......................................................................................................------------------------------------------ ..................................................................................................................................................
2012 62 91743,138 198 135
.................................................................................................................................................................................................................................................................... ----------------------- .......................................................................................................................................................2013 65 10.,980,461 208 145
.....................................................................................................--------------------------------------------------- .................................................................................................................................................
2014 72 � 10.,542,835 187 155
.....................................................................................................- ----------F--------------- .......................................................................................................................................................................................
2015 76 10,951,526 176 171
......................................................................................................--------------------------------------------- ..............................................................................................................................................................
2016 80 11,010,907 177 170
ig
2010 58 81909,.187 192 127
..................................................................................................- -----------------------------------------------------------..................................................................................................................................................................................
2011 62 91172.,988 187 135
.....................................................................................................---------------------------------------- .....................................................................................
2012 62 91743.,138 198 135
.....................................................................................................---------- .................................................................................................................................................
2013 65 10.,980.,461 208 145
.....................................................................................................-------------------------------------------------------------------------------- ...............................................................................................................................................................................................................................................................................................................................................................................
2014 72 10.,542.,835 187 155
.....................................................................................................
2015 76 10,951,526 176 171
.....................................................................................................------------------------------- ........................................................................................................................................................................................................................
2016 �� 80 L 11,,010,,907 177 170
............................................................. ------------------------------------------------------ ..........................................................................................................................................................................................................................................................................................................................................
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM) 4-17 m
CHAPTER 4 CITY OF ASHLAND WATER SYSTEM PLAN
Table 4-9B
Equivalent Residential Units-Continued
2010 579 1361133,308 192 11940
................................................................................................................................................................. ................................................................--------- .................................................................................................
2011 581 137,649.,340 �� 187 21017
------------------------------------ .. ......................................................................................................................................................................................
2012 588 14112141766 198 11956
................................................................................................................................................................. .................................................................................................--------------------
2013 586 140,110,401 208 � 11845
................................................................................................................................................................. ............................................................................................................................................................------------................................................................................................
2014 590 1341557,956 �� 187 � 11973
................................................................................................................................................................. ............................................................................................................................................................................................................................................................................................................................
2015 590 136,443,.256 176 21126
................................................................................................................................................................. ---------- --------------------------------------------------- ................................................................................................
2016 593 136,245,374 � 177 2)106
........................................................................................................................................................................................................................................................................................................................................................................................................................................
EmmiiiiiiiiiiiiiiiiiiillillillillillillilliillillillillillillilI 111111111110m
2010 3 11022 192 0
................................................................................................................................................................................................................................................................................... ---------------------------------
2011 2 41109 187 0
........................................................................................................................................................ ..................................................................................................
2012 2 275 198 0
................................................................................................................................................................. ..................................................................................................................................................................................... .................................................................................................
2013 0 0 208 0
.......................................................................................................................................................------------------------------------------------- ..................................................................................................
2014 0 0 187 0
......... ---------------- ------------ .................................................................................................
2015 0 0 176 0
........................................................................................................................................................------------------------ ..............................................................................................................
2016 0 0 177 0
Millillilillillillillillillillillillillilliillillillillillillilliillillillilliillillillillillillilliillillillillillillill=
2010 16 61784.,577 192 97
.......................................................................................................................................................- .......................................................................................................... ...............................................................
2011 16 71155.,087 187 105
.......................................................................................................................................................- -----------------...............................................................................................................................................................................................................................................................................
2012 15 6,,676.,933 198 92
.........................................................................................................................................................................................................................................................................................................................................................................................................................................................
2013 15 1 71091,.256 208 93
........----------------------------------------- -------------------- ...................................................................................................................................................................................-------------------------------
2014 29 71818,.924 187 115
.......................................................................................................................................................................................................................................................---------
2015 63 6111211481 176 953
..........................------------------- ---------------- .................................................................................................................................................................................................................................................
2016 65 72.,916.,421 177 11127
..................................................................... .........................................................................---------------L--------- .....................................................................................................................................
4-18 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER DEMANDS
Table 4-9C
Equivalent Residential Units-Continued
2010 96 41,.042.,636 192 585
..................................................................................................................................................................................................................................................................... .........................................---------
2011 101 411719,040 187 613
........................................................................................................................................ ............................................................................................................................................................--------------------------- .....................................................................................................................................................
2012 106 44,.964.,433 198 621
..................................................................................................................................................................................................................................................................... .........--------- ....................................................................................................................................................................................................
2013 98 49,158,394 208 647
.................................................................................................................. ..................................................................................... ----------
2014 101 72,990,366 187 11070
........................................................................................................................................ ..................................................................................... --------- ....................................................................................................................................................
2015 63 55,.681,857 176 868
........................................................................................................................................ ..................................................................................... -------------------------
2016 46 33,083,654 177 511
2010 372 132,325,776 192 11866
..................................................................................................... .............................................---------------
2011 376 1151967,240 �� 187 1;704
..................................................................................................... .............................................................................................................................................................................................................................................................................................................................................................................................................
2012 339 139,613,067 198 � 11928
......................................................................................................--------------------------------------- ............................................................................................................................................................
2013 208 137,913,590 208 11816
........................................................................................................................................ .................................................................................... --------------------....................................................................................................................................................................................................................
2014 201 186,928,216 187 21741
.....................................................................................................------------------------------------------------------ .....................................................................................................................................................
2015 201 177,344,959 176 � 21766
.....................................................................................................- --------------- ---------------- .....................................................................................................................................................
2016 265 204,099.,607 177 31155
2010 81671 965,908.,012 192 13Y767
......................................................................................................------------------ ..------------------------------------------..................................................................................................................................................
2011 81699 9321011.,636 187 13,626
.....................................................................................................- --------------------
2012 8,711 11007.,593,.876 198 131921
.....................................................................................................-------------------------------------- .......................................................................................................................................................................................................................
2013 81597 1�042,277,451 208 131722
..................................................................................................... .........................................................................................................................................................................................................................
2014 8.,665 11053,849,187 187 151455
.....................................................................................................------- ------------ ........................................................................................................................................................................
2015 � 8,,701 11049,403,215 176 16367
.....................................................................................................----------------- ................................................................................................................................................................................................................................................................................................
2016 � 8,796 11065,011,589 177 16,461
..................---------------------- ---I------ I I.......................................................................................................................................................................
The average demand per ERU from 2013 of 208 gpd will be used later in this chapter to forecast
ERUs in future years based on estimated future demands. This demand per ERU value also will be
used to determine the capacity (in terms of ERUs) of the existing system in Chapter 5.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM) 4-19 11 INI12
CHAPTER 4 CITY OF ASHLAND WATER SYSTEM PLAN
Average Dady Dernand
ADD is the total amount of water delivered to the system in a year divided by the number of days in
the year. The ADD is determined from the historical water use patterns of the system and can be
used to project future demands within the system. ADD data typically are used to determine
standby storage requirements for water systems. Standby storage is the volume of a reservoir used
to provide water supply under emergency conditions when supply facilities are out of service.
Yearly water production records from the City's supply sources and customer water use records
were reviewed to determine the system"s ADD. The system's average day demand from 2010
through 2018 is shown in Table 4-4.
Maximum Day Dernand
MDD is the maximum amount of water used throughout the system during a 24-hour time period
of a given year. MDD typically occurs on a hot summer day when lawn watering is occurring
throughout much of the system. In accordance with Oregon Department of Human Services design
standards, the distribution system shall provide fire flow at a minimum pressure of 20 psi during
MDD (i.e. maximum day demand) conditions. Supply facilities (e.g. wells, springs, pump stations,
interties) are typically designed to supply water at a rate that is equal to or greater than the
system"s MDD.
Because water use restrictions have been in place for 2014 through 2016, 2013 data was used to
determine typical peaking factors for the water system. Fifteen-minute interval water production
and reservoir level records from 2013 were reviewed to determine the system"s MDD. The City's
MDD occurred on July 26,, 2013, when temperatures reached approximately 100 degrees
Fahrenheit and were in the 90s or over 100 the days before and after. As shown in Table 4-10,, the
demand of the system on July 26,. 2013,. or MDD,, was 4.,106 gpm.
Table 4-10
Maximum Day Demands and Peaking Factors
uiiiiiilU Il�iuii � uu � uu
Average 2.,014
...................................................................................................................................................................
Maximum Day Demand (MDD) 7/26/2013 4.1106
.....................................................................---------------- ......................................................................................................................................................Peak Hour Demand (PHD) 8/5/2013 6:00 AM —7:00 AM 91784
iiiiiiiilmi liuiiiii uiiiii liuiiii iiil iii ui iii iiii�llll I�uiiimiii Iluuii�I�uii liui iii�
Maximum Day Demand/Average Day Demand (MDD/ADD) �2.04
................................................................................................................................................................... ...............................................................................................................................................................................................................................................
Peak Hour Demand/Maximum Day Demand (PHD/MDD) 2.38
.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Peak Hour Demand/Average Day Demand (PHD/ADD) 4.86
...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
4-20 Z:\130THELL\DATA\C0A\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER DEMANDS
PHD is the maximum amount of water used throughout the system, excluding fire flow, during a
one-hour time period of a given year. The PHD,, like the MDD, is typically determined from the
combined flow of water into the system from all supply sources and reservoirs. Five-minute interval
reservoir level and water production records were reviewed to evaluate the PHD. As shown in
Table 4-10,,the City's PHD for 2013 was 9,,784 gpm, which occurred on August 5 th from 6:00 AM to
7:00 AM.
Table 4-10 also shows the peaking factors of the water system based on the ADD., PDD, and the
PHD data.
ow Demand
Fire flow demand is the amount of water required during firefighting as defined by applicable
codes. Fire flow requirements are established for individual buildings and expressed in terms of
flow rate (gpm) and flow duration (hours). Fighting fires imposes the greatest demand on the water
system because a high rate of water must be supplied over a short period of time., requiring each
component of the system to be properly sized and configured to operate at its optimal condition.
Adequate storage and supply is useless if the transmission or distribution system cannot deliver
water at the required rate and pressure necessary to extinguish a fire.
General planning-level fire flow requirements were established for the different land use categories
to provide a target level of service for planning and sizing future water facilities in areas that are
not fully developed. The general planning-level fire flow requirement for each land use category is
shown in Table 4-11. The water system analyses presented in Chapter 5 are based on an evaluation
of the water system for providing sufficient fire flow in accordance with these general
planning-level fire flow requirements. The fire flow requirements shown in Table 4-11 do not
necessarily equate to actual existing or future fire flow requirements for all buildings, since this is
typically based on building size, construction type, and fire suppression systems provided.
Improvements to increase the available fire flow to meet actual fire flow requirements greater than
those shown in Table 4-11 shall be the responsibility of the developer.
Table 4-11
General Planning-Level Fire Flow Requirements
Single-family Residential 1,,500 2
..........................................................................................................................................................................................................-------- ...............................................................................................................................................................................................................................................................................
Multi-family Residential 2,.500 3
..................................................................................................... ---------------------------------------------- ...................................................................................................
41000 4
Commercial/industrial
...................................................................................... --------------------------------------------------------------- ..........................................................................................................................................I............................... .........................
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM) 4-21
CHAPTER 4 CITY OF ASHLAND WATER SYSTEM PLAN
utt ire Wate r, De mands
Basis for Projecting Dernands
Future demands were calculated from the results of the future per capita demand computation
shown in Table 4-7 and the projected population data from Chapter 3. Future demand projections
were computed with and without water savings expected from implementing conservation
measures. The City's conservation program presents a goal to reduce the system-wide average
daily demand from projected non-conservation demand by 5 percent by 2020,, 15 percent by 2030,
and 20 percent by 2050.
o r Dernand I -ecasts and Conservation
Table 4-12 presents the projected water demand forecast for the City's water system. The actual
average daily demand data from 2016 also is shown for comparison purposes. The future ADDS
were projected based on population estimates for the given years and the estimated demand per
capita value of 123 gpcd. Historical average demands for SOU and the Ashland Water Department
were added to other customer demands.The 123 gpcd value already assumes any potential water
loss,, so water loss is not added in separately. The MDDs and PHDs shown were computed from the
projected ADDS and the existing system peaking factors shown in Table 4-10 and Chart 4-16. The
future demand projections are shown with and without estimated reductions in water use from
achieving conservation goals.
Table 4-12
Future Demand Projections
Population Data
Population in water Service 201620 21,162 211290 211419 211547 211684 211182 211957 22.1474 231244
Area
Average Day Demand(gpm)
......................................
Demand without 1,823 21203 2,214 21225 21236 21247 21259 21271 21315 21380
Conservation
Demand with Conservation 2,176 21160 21144 21129 21120 21111 21102 2,067 21039
Maximum Day Demand(gpm)
Demand without 41106 41491 4513 4535 41558 41581 405 4,629 41718 4,852
Conservation
...............
Demand with Conservation 41435 41403 41371 41340 41322 41304 41286 41213 41156
Peak Hour Demand(gpm)
Demand without 91784 10,699 101752 101805 101858 101915 101972 111028 11,242 111560
Conservation
Demand with Conservation 10,567 10,490 10415 10,341 10,297 10,254
10,211 10,037 9,901
2016 Maximum Day Demand and Peak Hour Demand values are based on actual average day demand amounts for the given year and
typical peaking factors,and do not necessarily represent actual peak demands for 2016.
2 Projected population data beyond 2016 is based on projected UGB population plus City limits population,as shown in Table 3-2.
4-22 Z:\130THELL\DATA\C0A\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER DEMANDS
The analysis and evaluation of the existing water system with proposed improvements, as
presented in Chapters 2 and 5, is based on the 2437 projected demand data without conservation
reductions. This ensures that the future system will be sized properly to meet all requirements,
whether or not additional water use reductions are achieved. However, the City will continue to
pursue reductions in water use by implementing the current conservation program.
Chart 4-16
Maximum Day Demand Projections
ProjectionsMaxiMUm Day Demand
awn, +',,yry�gr�m �y ,g�,.Aettw omUwaax i4@MMWW
n °NOM"- mnur a diimmm, mauummiw gioinnif" -nnp mn 1101ine -1m, dinumrm 'n"af, mo�moamim awn ��onnNm .muumuuuuu, rt�muuuuuum
a
mon
o
I
I
-Historic MDD
2.00
Ala* AN" MDD Without Conservation
1-00
MDD With Conservation
s91,ry,��?!>yN�U��l9�➢>?fl1D�����N�U�9 �ioo��nao�000eoa���oo�nnoi000�����„000�nooro��eon�r000�7�.... i..,/,
2010
2015
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM) 4-23 IN I
CHAPTER 4 CITY OF ASHLAND WATER SYSTEM PLAN
F'u ture ER(Js
Table 4-13 presents the existing and projected ERUs of the system. The ERU forecasts are based on
the projected water demands from Table 4-12 and the average demand per ERU that was
computed from actual 2013 data.
Table 4-13
Future ERU Projections
Demand Data(gpm)l
ADD without Conservation 1,823 21203 21214 2,225 2,236 2,247 2,259 21271 2,315 21,380
ADD with Conservation 21176 21160 21144 2,129 2,120 21111 21102 2,067 2.1039
ERU Basis Data(gpd/ERU)
Demand per ERU without 177 208 208 208 208 208 208 208 208 208
Conservation
Demand per ERU with 206 203 201 198 196 194 193 186 178
Conservation
Equivalent Residential Units(ERUs)
Total System ERUs 161461 15,244 15,319 15,395 15,471 15,551 15,632 15,712 16,017 161470
Demand data calculated as in Table 4-12.
4-24 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH4 20190605.DOCX(6/19/2019 11:11 AM)
5 � WATER SYSTEM ANALYSIS
5mimooi100000io EII oil YSIH1111111111111111111PENA ANALYSIS
I ntro " Uction
This chapter presents the capacity analysis of the City"s water system. Individual water system
components were analyzed to determine the ability to meet policies and design criteria under
existing and future water demand conditions (presented in Chapter 4).The analyses below cover
supply, storage, pumping, pressure zones, and distribution piping. The policies and criteria are
summarized below for each analysis. Recommendations are discussed in this chapter and captured
in the recommended Capital Improvement Plan (CIP) in Chapter 6.
Changes Since Last Water Master Han
Since completion of the City's last Water Master Plan, several improvements have been decided
upon and implemented that influence the system analysis.These include the following:
• Construction of the TAP Emergency Supply System. This new emergency supply provides
MWC water to the City and makes use of the City"s Lost Creek Reservoir water rights
purchased for this purpose.
• Construction of the New Park Estates Booster Pump Station. This pump station upgrade
provides a much higher level of'reliability and fire protection for customers at the highest
elevations in the City.
• Construction of the New Terrace Street Booster Pump Station. This pump station upgrade
improves the City"s ability to boost TO supply in the Ashland Canal to the WTP and new
WTP.
• New Water Treatment Plant Decision on Capacity and Location. The new WTP is planned
to be a 7.5 MGD capacity plant (expandable to 10 MGD). The location of the plant is at the
granite quarry southwest of the Granite Reservoir.
• Pipe Improvement Projects. Several pipe improvements have been made related to new
development and improving distribution system capacity.
Gene14 Systern ChaHenges
The following summarizes the overall challenges to the water system. Goals for addressing these
challenges are also listed and the analyses throughout this report reflect these goals.
Ch Henge 1: Movhrig froom a Gravity System -to a Partial Gravity Systern
The majority of'the City"s customers are currently served entirely through a gravity supply system.
With construction of the new WTP, located lower in elevation than the existing plant.,
approximately half of the City"s supply will need to be boosted through a new booster pump
station. The size of this pump station and ongoing pumping costs can be reduced by reducing
demands in the high-pressure zones. This can be accomplished by reducing the use of PRVs that
supply water from higher zones to lower zones and by improving the ability of the lower zones to
serve low elevation customers (see Supply Analysis below for further detail).
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM) 5-1 ;t, mu12
"000011#
CHAPTER 5 CITY OF ASHLAND WATER SYSTEM PLAN
Goal: Reduce pumping to Crowson Zones:
• Improve Granite Zone transmission capacity;
o Extend piping to serve low elevation customers in Crowson Zone 6;
• Reduce/eliminate PRVs supplying from Crowson or Alsing Zones to Granite Zones.
Ch a &nge 2: Granite Reservoir is Aghrig and in a Poor Location
The Granite Reservoir is in poor condition and requires major improvements to remain functional
and safe. In addition, the reservoir is located in Ashland Creek, which places the reservoir at risk of
flood damage and ongoing deterioration. With construction of one or two new clearwells at the
new WTP site,, the storage volume requirements for the Granite Zones are replaced so that the City
could take this reservoir offline. However,, the reservoir at its current location is important to the
operation of the TAP Emergency Supply into Granite Zone 1. See Storage Analysis below for further
details.
Goal: Abandon the existing Granite Reservoir without compromising system hydraulics..
• Confirm ability of TAP system to function without a terminal reservoir;
• Confirm if WTP clearwells can replace the Granite tank functionality;
• Consider a new Granite Zone Reservoir.
ChAenge 3: Oversized Alying Reservoir
For many years the City has dealt with water quality challenges in the Allsing Reservoir, which is
oversized for the current service area that it serves. The low demands on the reservoir result in
poor water turnover and lead to water quality issues. The City has adjusted the Hillview Pump
Station setpoints to temporarily alleviate the water quality issue by keeping the reservoir partially
full. However,this is not a long-term solution and the City"s total stored volume is less than it could
be to support an emergency. See Storage Analysis below for further details.
Goal: Expand lsing Reservoir service area to achieve reservoir turnover.
Cha nge 4- Fire Flow Deficiencies at Highest Customers (Park Estates aond South Mountain)
Despite construction of the new Park Estates BPS,,the water system cannot provide the anticipated
fire flows of 2.,000 gpm to hydrants in the boosted pressure zone (Crowson Zone 8). This is because
the 8-inch pipes serving the area are undersized for this amount of flow. Additionally, high
elevation customers at the top of South Mountain Street have very low pressures during fire flows
and could be better served by the boosted zone (currently served by Crowson Zone 1).
Goal: Increase pipe sizes upstream of the Park Estates BPS.-
• Expand Crowson Zone 8 to connect to Crowson Zone 4;
• Reconnect piping for high Crowson Zone 1 customers to Crowson Zone 4.
Cha en ge 5. .......I A I.') I..........irnergency Supply Cannot Reach Crowson Zo��--ie""' .............. I
The TAP Booster Pump Station can supply water during an emergency to customers in the Granite
Zones, which comprise approximately half of all system demands, but cannot boost water as high
as the Crowson Zones. In the case of a WTP outage for more than one day, the water system needs
5-2 Z:\130THELL\DATA\C0A\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM ANALYSIS
a way to boost water to meet the demands of all customers, including those in the higher pressure
zones. See Pump Station Analysis for further details.
Goal: Identify the location for permanent pump station.
• Because the City has a location for a temporary pump to boost water from the Granite Zone
to the Crowson Zone., this project could be delayed as needed.
ChaHenge 6: Pressure Extremes hri Mwiy I...o c at i o orl s
Due to the large variation in elevations within each pressure zone, the water system has many
locations of low and very high pressures. See Pressure Zone Analysis below for further details.
Goal: Rezone where feasible.
('.,'.'ha lenge '7: Inability to Meet Higher Fire low Stwldards
Many neighborhoods in the water system were originally built for lower fire flow rates; such as
those with 4-inch diameter pipes. These areas are unable to meet the City"s updated criteria to
provide 1,500 gpm in residential areas and 4,,000 gprn for non-residential customers. See Fire Flow
Analysis below for further details.
Goal: Build in distribution capacity, concurrent with road improvement projects to reduce costs.
U-iaHenge 8: PotentU Storage Deficiency
Storage volume evaluations in the past have identified storage deficiencies in the Crowson and
Granite Zones. However, these deficiencies are highly dependent on the emergency scenario for
which the City is planning. See Storage Analysis below for further details.
Goal: Revise criteria to account for new redundant, reliable supply sources.
3�
U-iaknge 9: �Man y Aging, Undersized I "pes
Despite the City"s ongoing pipe replacements, many pipes in the water system are aging and are
undersized for current day pressure criteria. See Pressure Analysis below for further details.
Goal: Replace aging pipes as budget allows, and concurrent with road improvement projects to
reduce costs.
Sur,,,,,-,,)ply Eval�uat q I I Oil
This section evaluates the City"s water supplies for meeting existing and future demands of the
water service area.
SLJ��F,)Ply Criteria
Table 5-1 presents the City"s Supply Level of Service Goals. These goals are continued from the
City's last master planning efforts.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM) 5-3 NMI I
CHAPTER 5 CITY OF ASHLAND WATER SYSTEM PLAN
Table 5-1
Supply Level of Service Goals
Have sufficient supply to meet projected demands
that have reduced based on achieving 5 percent
Water System Capacity additional conservation from base year 2009.
However, City will have a goal of achieving 15 percent
conservation.
....................................................................................................................................................... ........................................................................................................ .................................................................................................................................................
Community will accept curtailments of 45 percent
Water System Reliability during a severe drought.The City will prioritize
source water available during drought conditions.
....................................................................................................................................................... .....................................---------- ..............................................................................................................................................................
Implement redundant supply projects to restore fire
protection and supply for indoor water use shortly
Water System Redundancy after a treatment plant outage. Supply ADD with
redundant supply.
....................................................................................................................................................... ————----------------------
Meet or exceed all current and anticipated regulatory
Regulatory Requirements requirements, including cross-connection program
improvements.
......................................................................................................................................................... ........................................................... ...................................................................................................
S is
Each supply level of service goal is evaluated for the City"s water system as follows.
Wa-Ler Sys L&m Capacity
The planned capacity of the new WTP is more than adequate to supply the projected 2040
Maximum Day Demands (MDD) and beyond (Figure 5-1); thus, the City amply meets the water
system capacity level of service goal.
Wal-.-,�er Systei-n ReHabHity
During water supply disruption or drought conditions the City"s supply strategy is as follows in
order of priority:
1. Supply East/West Fork Ashland Creek water as available to the new WTP (stored in Reeder
Reservoir and soon to be able to bypass Reeder Reservoir).
2. Supplement Ashland Creek water with TID water to the new WTP.
3. Use the TAP Supply System to supply water from MWC.
4. Curtail supply according to the City's Water Curtailment Plan.
5-4 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM ANALYSIS
Figure 5-1
New WTP Capacity vs. Maximum Day Demand Projections
WTP Capacity . i. ii T a ism -)Jections
101.00
.
00
µme;,
T
.00
0�1' MONSOON, MONSOON" MINUEND MONSOON, MONSOON* NONUNION, MINIMUM IN
OO
flu ��
T .
5.00
0 41.00
... ..................
D (No Conservation) d)
lu 3.00
MDD(With Conservation) (rn d)
2.00 P Capacity(7.5 rn
1.00
01.00
2020 2025 2030 2035 0401
Water Systern Redundancy
With construction of the TAP Supply System,the City meets the first part of the water system
redundancy level of service goal. However, neither the firm nor total capacity of the TAP BPS is able
to meet ADD without conservation in the case of'a WTP outage (see Figure 5-2). Figure 5-2
presents the projected ADD with and without the planned conservation goals as presented in
Chapter 2. To meet the water system redundancy goal, the City plans to expand the TAP
Emergency Supply system to a firm capacity of'3.o MGD (firm capacity is the total capacity with the
largest. This capacity exceeds the projected ADD with conservation and is slightly less than ADD
without conservation.
Expansion of the TAP supply system entails adding an additional pump in the TAP Pump Station,
adding a backup generator that is able to power the firm capacity of 3.0 MGD of supply, pipeline
transmission improvements., and likely other improvements in the TAP Emergency Supply system
upstream of the City's TAP Pump Station. Expansion of the TAP Regional Booster Pump Station and
Talent Booster Pump Station will be evaluated in the TAP Water Master Plan to be completed in
the next year with the Cities of Phoenix and Talent. These recommended projects to meet the
supply redundancy level of service goal are included in Chapter 6.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM) 5-5
CHAPTER 5 CITY OF ASHLAND WATER SYSTEM PLAN
Figure 5-2
TAP Supply vs.Average Day Demand Projections
TAP Emergency Supply vs. Average Day Deirriaind Projections
3.50
0. NO 1mvw"10,*#if '00
0
✓Ni•tlM!M'A�f llVN 4MNa...............aw-11, 0"Kio
tX0 3. 0
E -----poi--
2,50
CT3
E
Q)
r- 2.00
...........
150
CT3
CL
(73
U 1.00 -----,,ADD(No Conservation)(mgd)
-ADD i(Wth Conservation)(mgd)
0150 TAP BPS Firm Capacity(2.0 mgd)
—TAP BPS Total Capacity(3.0 mgdl)
01.00 ............................................................................................................................................................................................-—----------------------------------------------------------
2020 2025 2030 2035 2040
Ye a r
Reg i i�a o ry [ e q u ,e rn e n't s
The City is meeting all regulatory requirements including those for cross-connection control.
However, City staff think it would be prudent to implement the cross-connection control program
more aggressively; this is discussed further in the City's 2019 Operations and Maintenance Plan.
New W I I Integration with Existing Systern
Integration of the new WTP into the City's existing system was evaluated as part of this WMP.
Assumptions for the location and assumed infrastructure are based on the recommendations in
Ashland Water Treatment Plant Technologies Alternatives Report (HDR, March 20, 2019) (Report).
The storage components of the new WTP currently include two 0-85-MG clearwells. To save
upfront costs, the City is planning to only construct one clearwell at first, and then implement the
second as budget allows. Combined, the 1.7-MG capacity of the two clearwells replaces the storage
requirements supplied by the Granite Reservoir (see Storage Analysis below). After reviewing
alternatives with City staff, it is recommended that the City not construct a second clearwell at the
new WTP, but instead construct a new Granite Zone Reservoir elsewhere in the system.
As discussed in General System Challenges above, the site of the new WTP is at an elevation that
results in approximately half of the City's demands located higher than the new WTP, and half
located below the new WTP (Figure 5-3).
Supply to the zones above the WTP require water to be boosted to these customers with a new
"WTP to Crowson" Booster Pump Station. This pump station is planned to be constructed with the
new WTP. Assuming an elevation of the new pump station of 2255 ft (as provided in the Report),
5-6 Z:\130THELL\DATA\C0A\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM ANALYSIS
the pump station static head should be approximately 170 ft to meet Crowson Reservoir overflow
elevation (2425 ft). A total head of 200 feet was assumed for hydraulic modeling. The capacity of
the new pump station depends on continued reliance of the PRVs from the Crowson Zones to the
Granite Zones.
Based on discussions with City staff and the output of the City's hydraulic model, the City"s current
water system operates to supplement the Granite Zone 1 demands through several PRVs coming
from the Crowson Zone. As seen in Figure 5-3,, these are PRVs 8, 9,, 14, 15, 16, 18, and 20. During
PHD, the supply through these PRVs can be as much as 1,.400 gpm according to the hydraulic
model. This indicates that the Granite Zone is relying on the Crowson Reservoir to provide PHD,
which should ideally come from the Granite Reservoir where peak hour demands for the zone are
stored. To minimize the size and ongoing pumping costs of the WTP to Crowson pump station, the
City could implement changes to reduce the water that drains from the Crowson Zones to zones
that can be supplied by gravity from the new WTP.
To reduce water draining through the Crowson to Granite PRVs,, the Granite Zone 1 piping requires
better transmission capacity in order to maintain the hydraulic grade across the zone and thereby
use the PRVs less often. The City's hydraulic model was used to simulate pipe size changes to
achieve this result.
Granite Street Pipe and Va�vh�-ig
The first pipe identified for improvement is the main transmission supply pipe in Granite Street that
supplies water from the Granite Reservoir to the Granite Zone customers.The existing Granite
Street pipe is a combination of old 12-inch,. 14-inch,, and newer 16-inch steel pipe. The model
predicts a significant drop in the hydraulic grade in this pipe during PHD. By increasing the size of
this pipe, the hydraulic grade in the zone is maintained much closer to the 2170 ft gradient
provided by Granite Reservoir (when full).
The following options are recommended dependent on how the Granite Reservoir is addressed:
• As long as the Granite Reservoir remains in its current location, or if the City abandons the
Granite Reservoir and constructs two clearwells at the new WTP to serve the Granite Zone:
• The Granite Street pipe is recommended to be a 24-inch diameter pipe from Granite
Reservoir to Strawberry Lane to provide PHD to the Granite Zones.
• The existing 16-inch (Granite Zone 1) and 24-inch (Crowson Zone 1) pipes in Granite
Street should be reconnected in Strawberry Lane and Nutley Street to allow the 24-inch
pipe to supply the Granite Zone.
• If the Granite Reservoir is abandoned and a new Granite Reservoir is constructed elsewhere
in Granite Zone 1:
• The Granite Street pipe is recommended to be a 16-inch diameter pipe from the current
Granite Reservoir site to Nutley Street to provide IVIDD to the Granite Zones.
• A new flow control valve would be required along the pipe to provide maximum day
demands to the Granite Zones.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM) 5-7
CHAPTER 5 CITY OF ASHLAND WATER SYSTEM PLAN
o Piping from the new WTP to the current Granite Reservoir location is recommended to
be replaced with a 16-inch diameter pipe and located in Granite Street. This replaces an
aging steel pipe, improves reliability of a major transmission line, abandons two aging
creek crossings, and improves the hydraulic grade of the zone.
arc&nic Drive and Nutley Street Pipe
To reduce reliance on PRVs 8 and 9 on the west side of the Granite Zone., the pipes in Nutley Street
(from Granite Street to Scenic Drive) and Scenic Drive (from Nutley Street to Wimer Street) are
recommended for increasing in size to a 12-inch pipe. These projects replace aging 4- and 6-inch
pipes in these streets and greatly improve transmission of gravity supplied water. This project is
included in Chapter 6.
Crows&n Zones 2. and 6 Rezoning
An additional long-term recommendation for reducing the pumping capacity required of the WTP
to Crowson BPS is to rezone low elevation customers on the far northeast end of the City's system
in Crowson Zones 2 and 6. Customers south of Ashland Street and between Clay Street and Tolman
Creek Road, as well as customers in the vicinity of the Ashland Municipal Airport could all be served
by Granite Zone 1 with more than adequate pressure. This will require extending the Granite
Zone 1 piping to connect these areas; much of'which is anticipated to be required as new
development occurs along East Main Street. This recommendation is described further in the
Pressure Zone Analysis discussed below.
-i a ry New W_F1 �ntegration Recommendation Sumn
Until the City can fund the above transmission projects,, it is recommended that the City plan for
the WTP to Crowson Booster Pump Station to have adequate capacity to meet the demands of the
Crowson and Alsing Zones and provide adequate supply to the Crowson to Granite Zone PRVs
under current demands. This capacity equates to approximately 3,,200 gpm (see Pump Station
Analysis below). (if and when the City is able to reduce all supply through the PRVs,, this capacity
could be reduced to approximately 1,,650 gpm.)
It is also recommended that the City reduce the pressure settings in the Crowson to Granite PRVs
once the new WTP is constructed, according to Table 5-2 below.
A second 0.85-MG clearwell is not recommended at this time,, but a new 0-85-MG Granite Zone
Reservoir is recommended instead —see Storage Analysis below. The Granite Street and
Nutley/Scenic Drive pipe improvements are included in the recommended capital improvement
plan (CIP), presented in Chapter 6. Due to the decision to construct a new Granite Zone Reservoir
elsewhere in Granite Zone 1,. the Granite Street pipe is recommended to be a 16-inch pipe from the
WTP to Strawberry Lane. Future rezoning of Crowson Zones 2 and 6 is also included in the CIP in
Chapter 6.
5-8 Z:\130THELL\DATA\C0A\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM ANALYSIS
Table 5-2
Recommended PRV Settings to Reduce Crowson to Granite PRVs
8 45 38.5 40/35
................................................................................................................. ..............................................................................................................................
9 45/38.5 40/35
................................................................................................................. ...................................................................................................................................................................................................................................................................................................................
14 70 60
79 15 60
................................................................................................................. .......................................................................................................................................................................................................
16 71 60
Supply Recor ITS endations
The following summarizes the recommended supply improvements:
• Construct new WTP and associated projects-,
• 7.5-MGD WTP (expandable to 10.0 IVIGD);
• One (1) 0.85-MG clearwell for storage;
• Pump station to boost water from the new WTP to the Crowson Reservoir;
• 16-inch Granite Street Piping from the new WTP to piping that supplies Granite
Reservoir (required until Granite Reservoir is abandoned);
• Emergency Ashland Creek intake;
• SCADA system upgrades.
• Expand the TAP Supply System to 3.0 IVIGD:
• Additional pump at Ashland TAP BPS to achieve firm capacity of 3.0 MGD;
• Emergency Back-up Generator at Ashland TAP BPS;
• Expansion of the Talent TAP BPS;
• Potential expansion of the Regional TAP BPS;
• TAP System Transmission Capacity Improvements.
• Install transmission piping improvements and rezoning to minimize pumping to Crowson
Zone 1:
• Reduce PRV settings as shown in Table 5-2;
• 16-Inch piping in Granite Street from Granite Reservoir to Nutley Street;
• 12-inch piping in Scenic Drive and Nutley Street;
• Rezone portions of Crowson Zones 2 and 6 to be supplied by Granite Zone 1.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM) 5-9
CHAPTER 5 CITY OF ASHLAND WATER SYSTEM PLAN
Storage [`����bcilities
This section evaluates the capacity of the City's existing water storage tanks to meet the existing
and future storage requirements of the system.
Storage Criteria
Water storage is typically made up of the following components: operational storage, emergency
storage, and fire flow storage. Each storage component serves a different purpose and will vary
from system to system. A definition of each storage component and the criteria used to evaluate
the capacity of the City"s storage tanks is provided below and summarized in Table 5-3.
01,,)eratioria� Storage—Volume of the reservoir used to supply the water system under peak demand
conditions when the system demand exceeds the total rate of supply of the sources. In the past,
the City has calculated operational storage as 25 percent of MDD for the zone it serves. Another
criterion is to calculate the volume needed to meet RHD that supplies to the zone are unable to
meet. Also called "Equalization Storage."
J! mergency Storage—Volume of the reservoir used to supply the water system under emergency
conditions when supply facilities are out of service due to equipment failures, power outages, loss
of supply, transmission main breaks, and any other situation that disrupts the supply source.
Common emergency criteria in the state of'Oregon is to assume emergency storage as two times
ADD (approximately equivalent to one times MDD). The City"s previous criteria assumed 25 percent
of MDD for emergency storage. This lower criteria correlates to the City constructing a new reliable
WTP.
1,,,,:ire J����ow Sl..00rage—Volume of the reservoir used to supply water to the system at the maximum
rate and duration required to extinguish a fire at the building with the highest fire flow
requirement in the zone. The magnitude of the fire flow storage is the product of the fire flow rate
and duration of the operating area's highest fire flow needs. These fire flow planning goals were
presented in Chapter 4.
Nes-Ling of Storage—Some water systems allow for "nesting" of fire flow and emergency storage,
meaning that it is assumed that a fire and a supply disruption would not happen at the same time
and therefore only the greater of the two storage volumes is used in the storage analysis.
5-10 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM ANALYSIS
Table 5-3
Storage Criteria
Operational Storage 0.25 times MDD of the area served by each reservoir
..................................................................................................... .........................................................................................................---------
Provide volume for single most severe required fire
Fire Flow Storage flow and duration for each reservoir service area.
Systemwide, provide volume for two largest fires.
..................................................................................................... ..............................................................---------- ......................................................................
0.5 times IVIDD of the area served by each reservoir
Emergency Storage Or
ES=(MDD—Firm Supply Capacity) (1 day)
...................................................................................................... ...............,o r Ana�ysis
The total combined storage capacity of the City-s reservoirs is 6.7 million gallons. The City"s original
criteria for storage requirements for operational, emergency, and fire flow are compared to the
existing storage to determine storage adequacy for the planning periods, as summarized in
Table 5-4.The table includes the storage surplus/deficiency. As seen at the end of the table, under
the City"s original criteria,, the City would have an existing storage deficit of 0.37 MG and a 2040
deficit of 1.34 MG given all current storage facilities.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM) 5-11 N1 I
CHAPTER 5 CITY OF ASHLAND WATER SYSTEM PLAN
Table 5-4
Existing Storage Evaluation
Maximum Day Demand no conservation MG1D 2.29 2.59 2.81
.......................................................................................................................................................
Required Storage (MG)
....................................................................................................................................................... ------------------- ..................................................................................................
Operational 0.57 0.65 0.70
.............................................----------- ...............................................................................................................................
Fire Flow � 0.96 0.96 0.96
........................................................................... -------------------..................................................................................................
Emergency 1.15 1.30 1.40
....................................................................................................................................................................................................................................................................................................................................................................................................................................................................------------- ........................................
Total Crowson Required Storage 2.68 2.90 3.06
....................................................................................................................................................................................................................................................................................................................................................................................................................................................
Total Crowson Existing Storage (MG) 2.10 2.10 2.10
....................................................................................................................................................................................................................................................................=............................................................................................................................................................---------...................................................................................................................................................................................................................
Crowson Storage Excess/(Deficit) (MG) 1.58) 1.80) .96)
It,,,,,R111,11,11,
Maximum Day Demand (no conservation) (MGD) 2.89 3.32 3.63
Required Storage (MG
.................................................................................................................................................................................................................................................................................................................................................................... ----------------------------------------- ....................................................................................................
Operational 0.72 0.83 0.91
....................................................................................................................................................... .........................................................................................................................
Fire Flow 0.96 0.96 0.96
....................................................................................................................................................... ---------------------------------
Emergency 1.45 1.66 1.81
......................................................................................................................................................................................................................................................................................................... ....................................................................................................
Total Granite Required Storage 3.13 3.45 3.68
......................... -------------------------------------------------------------------------
Total Granite Existing Storage (MG) 2.00 2.00 2.00
.........................................................................................................................................................------------------------ ................................................................................................
Granite Storage Excess/(Deficit) (MG) (1.13) (1.45)
Maximum Day Demand (no conservation) (MG1D) 0.12 0.14 0.15
Required Storage (MG I
....................................................................................................................................................... ------------------- ..................................................................................................................................................................................................
Operational 0.03 0.03 0.04
....................................................................................................................................................... ..................................................................................................
Fire Flow 0.96 0.96 0.96
............................---------- .............................................................................................................................................................................. .................................................................................................
Emergency 0.06 0.07 0.07
....................................................................................................................................................................................................................................................................................--------- .........................................................................................................................................................
1 Total Alsing Required Storage 1.05 1.06 .07
.......................................................................................................................................................---------------------------------------------------------------------- 1 Total Alsing Existing Storage (MG) 2.10 2.10 2.10
.......................................................................................................................................................
Alsing Storage Excess/(Def i i
. ................
ct) (MG) 1.05 1.04 1.03
........................................................................................................................................................ --------------- .......................................................................................................................................
5-12 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM ANALYSIS
lip
iii 11121111111 1111111 1111�11111111 1 111111 11111111m�I 1&1 11111111 Tillill;111 111111111111 M11111111
Maximum Day Demand (no conservation) (MGD) 0.04 0.05 0.06
...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................Require...........................................................................................................d Stora...........................ge........(M...............G...)
O..perationa.......................................................l 0.01 0.01 0.01
................................................................................................................................................................................................................................................................................................................................................................................................. ----------------------------------I...................................................................................::
Fire F.......low 0.18 0.18 0.18
......................................................................................................................................................................................................................................................................................................................................................................................................................................... ........-----------------------------------
Emergency..----------- 0.02--- 0.03 0.03
.......................................................................................................................................................................................................................................................................................................................................................................................................................................Total Fa...............l...lon..................Re.................quire...........................d Storage 0.21 0.22------------------ 0.22
............................................................................................................................................................................................................................................................................................................Total Fa.............................................................................................................l...lon................. Existin.........................................g Stora............................ge........ (M................G...) 0.50 0.50 0.50
Fallon Storage Excess/(Deficit) (MG) 0.29 0.28 0.28
SoulSTORAGE OPERATING AREA Storage Excess/(Deficit) (MG)
----------------------------------------------------------------------------
CROWSON-- (0.58)---------- (0.80) (0.96)
......................................................................................................--------------------------------------------------------------GRANITE (1-13) (1.45) (1.68)
....................................................................................................................................................
ALSING 1.05------------- 1......................................................04 1.68
..................................................................................................... -------------------------------------------------.................... ................................................................................................................................................................................................
FALCON-- 0.29 0.28 0.28
......................................................................................................-------------------------------------------------------TOTAL SYSTEM (0.37) L -93)0 (1.34)
.................................................................................................................................................................................................................................................................................................................................----------------------------------- ----------------------------------- _J____]
Storage Requirements
It is recommended that the City revise its storage criteria to account for the planned and
implemented system changes in the last few years. With a new emergency TAP supply connection
and an upcoming robust WTP, it is recommended that the City's criteria be adjusted to reduce
emergency storage. Using the second option for emergency storage noted in Table 5-3, where
emergency storage volume is discounted by the capacity of redundant supply, the City would be
revising its storage criteria to plan for an emergency in which the new WTP is offline and the TAP
supply is online. This particular emergency is consistent with the City's supply analysis goals
evaluated in this chapter.
Additionally, several studies have identified options to expand the Alsing Reservoir service area
thereby shifting the storage burden from the Crowson Reservoir to the Alsing Reservoir which has
excess capacity and needs additional demands to improve water quality.This system change was
reviewed again as part of this WMP and is further described in Alsing Reservoir Service Area
Expansion below.
Lastly, the City is actively promoting water conservation and the estimated reduction in overall
demands should be considered.
Table 5-5 presents the revised storage analysis using the adjusted criteria, the expanded Alsing
Reservoir service area, and reduced demands reflecting the City's conservation goals shown in
Chapter 4.
Z:\BOTHELL\DATA\COA\1016-096 WIMP 2016\03 DELNERABLES\CHAPTERS I-420180411\2015-WMPCH520190611.DOCX(6/19/201911:34 AM) 5-13
CHAPTER 5 CITY OF ASHLAND WATER SYSTEM PLAN
Table 5-5
Storage Evaluation-Criteria Adjustment,Alsing Expansion., Conservation Goals
2020 2030 2040
................................................................................................................................................................... ............................................................................................................
CROWSON 0-3 7 0.42 0.38
................................................................................................................................................................... --------------------- -------- L......................................................................................................................................
GRANITE 0.54 0.67 0.57
-------------- ................................................................................
ALSING 0.43 0.51 0.48
.............................................................................................--- -----------------
FALCON0.29 0.29 0.29
.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. ...............................................................................................................
TOTAL SYSTEM 1.63 1.89 172.
J�---------- ----------------------------------------------------- ...............................................................................................................
Granite Reservoir Replacement
Granite Reservoir is in major need of replacement or removal. A recent estimate for improvements
was $560,000, but even this investment would not improve the reservoir to current day seismic
standards. In discussions with City staff, it is recommended that the Granite Reservoir be eventually
abandoned,, and a new Granite Zone Reservoir constructed elsewhere in the system. This
recommendation is largely due to the importance of the reservoir to the operation of the TAP
supply system into Granite Zone 1.
The recommended location of a new Granite Zone Reservoir is in the northwest of the City above
Schofield Street and Lakota Way and in the vicinity of Ashland Mine Road. It is recommended that
the City pursue purchasing property in this area. This location is ideal for the TAP supply discharge
and could take advantage of new piping required for serving new development in this area. An
0.85-MG Reservoir with an overflow of'2170 ft was assumed in all future hydraulic modeling. The
reservoir and recommended pipe connections are included in the CIP in Chapter 6.
As discussed earlier, the design for the new WTP includes one 0-85-MG clearwell initially that will
serve as system storage and the second 0.85-MG clearwell is no longer recommended. Table 5-6
presents the final storage evaluation considering replacement of the Granite Reservoir and
addition of the 0.85-MG clearwell at the new WTP.
Table 5-6
Storage Evaluation-Removal of Granite Reservoir
................................................................................................................................................................ ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ .....................................................................
11MM 1
2020 2030 2040
............................................................................................................................................................................................................................................................................. ......................................................................................................................................................................................................................................................................................
..............
CROWSON 0.37 0.42 0.38
................................................................................................................................................................... ------------------------------------------ .. ...............................................................................................................
GRANITE 0.14 0.27 0.17
................................................................................................................................................................... -------------- ......................................................................................................................................................................................................................................................................................
ALSING 0.43 0.51 0.48
...................................................................................................................................................................................................................................................................................................................................................................................................................................................................
FALCON 0.29 0.29 0.29
...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
TOTAL SYSTEM 113 1.49 1.32
................................................................................................................................................................ .....................................................................................
5-14 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM ANALYSIS
Nshng Reservoi r Service Area Expansion
The City has evaluated options for expanding the Alsing Reservoir Service Area over many years.
These recommendations were re-evaluated herein. To improve water quality in the Alsing
Reservoir, it is recommended that the service area be expanded to serve customers south of
Siskiyou Boulevard and all of Crowson Zones 2 and 6. Figure 5-4 shows the recommended Alsing
Reservoir Service Area Expansion with required infrastructure and recommended valve closures.
Specific locations of valve reconnections should be confirmed with City staff. As seen in the
Figure 5-4, the recommendation includes one new PRV station., pipe improvements, and several
valve operational changes. These recommendations are described as follows-,
• Tolman Creek Road/Siskiyou Boulevard PRV—This PRV station serves to maintain pressures in
the Alsing Zones in the upper Tolman Creek Road area, while allowing the Alsing Reservoir
water to drain to portions of Crowson Zone 1, which connects to Crowson Zones 2 and 6. In the
hydraulic model, the proposed Tolman Creek Road PRV was set to 60 psi,, resulting in a
hydraulic grade line of 2270 ft (just slightly less than Crowson Zone 6 at 2290 ft).
• Tolman Creek Road Pipe—To supply the commercial fire flows (4,000 gpm) in the Crowson
Zones 2 and 6, the piping in Tolman Creek Road above the new PRV is recommended for
upsizing to a 12-inch pipe.
• Valve Modifications The Alsing expansion recommendation takes advantage of existing
parallel pipes in Siskiyou Boulevard while keeping the south pipe for Crowson Zone 1 and the
north pipe used for the expanded Crowson Zone 6. To do this,the following valve modifications
are recommended:
• Deactivate PRVs 18, 23, 26, 27;
• Open valves in Tolman Creek Road and Jacquelyn Street isolating Crowson 1 from Crowson
6 as shown in Figure 5-4;
I
• Close valves along Siskiyou Blvd to isolate the expanded Crowson Zone 6 from Crowson
Zone 1 as shown in Figure 5-4;
• PRVs 17 and 19 are still assumed active PRVs to Crowson Zones 5/6.
By implementing the above changes, the Crowson Zone 6 is adjusted to include all pipes shown as
blue lines in Figure 5-4. Rezoning the northern section of Crowson Zone 6 and the airport area in
Crowson Zone 2 is also recommended (see Pressure Zone Analysis below) but is not required as
part of the Alsing zone expansion.
S tor age Recon-imendations SurnrT�iary
The following summarizes the recommended supply improvements:
• Revise storage criteria to account for redundant system supplies.
• Expand the Alsing Reservoir Service Area as recommended.
• Construct one 0.85-MG clearwell at the New WTP to serve the Granite and Crowson Zones.
o As long as PRVs from Crowson to Granite are set to provide fire protection pressures,
fire volume for Granite can be stored in the Crowson Reservoir.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM) 5-15 12
CHAPTER 5 CITY OF ASHLAND WATER SYSTEM PLAN
• Abandon Granite Reservoir and plan for construction of a new reservoir in the vicinity of
Ashland Mine Road and Lakota Way.
o Pursue property acquisition in this area.
• Continue water conservation efforts.
Station Capacity Analysis
Pt irrip St at.-'Jon Ana�ysis Criteria
Table 5-7
Pump Station Evaluation Criteria
Capacity for Service Levels with Storage Supply Maximum Day Demand to service zone
Facilities assuming the single largest capacity pump is
offline (i.e., firm capacity)
................................................................................................................................................................................................................................................................................................................................................................................................... ----------------
Capacity for Service Levels with No Storage Supply Peak Hour Demand and fire flow
Facilities assuming the single largest capacity pump is
off'line (i.e., firm capacity).
....................................................................................................................................................................................................................................................................................................................................................................................------------..........................................................................................................................................................................................................................
Power Supply New pump stations require a main power source
and an emergency source.
Secondary power source for new pumps stations
to be sized to meet full pump station demands.
City will plan and design facilities to optimize
energy efficiency.
Pt..Arnp Station Ana�ysis
Table 5-8 presents the required pumping capacity for each pump station considering the demands
in its service area. Table 5-9 compares the required pumping capacities to the firm capacity of the
existing pump stations to identify any deficiencies. The results for each pump station are described
below.
New W I I to Crowsori BPS
The 2020 required capacity of the new WTP to Crowson BPS is estimated to 3.,200 gpm to meet
current day demands of the Crowson, Alsing, and Fallon Zones and approximately 1.,400 gpm of
demand estimated through the Crowson to Granite PRVs. This capacity could increase to as much
as 4,219 gpm by 2040 (the model predicts increased supply through the Crowson to Granite PRVs
as overall system demands increase). Depending on if and when the City is able to reduce the need
for the Crowson to Granite PRVs, and if the City rezones lower portions of Crowson Zones 2 and 6
5-16 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM ANALYSIS
to be served by the Granite Zone (discussed in Pressure Zone Analysis below), the pump station's
2040 capacity could be reduced from 4,219 gpm to 1,624 gpm.
To be conservative and to reflect that the City may be unable to modify the use of the Crowson to
Granite PRVs for many years, it is recommended that the New WTP to Crowson BPS be sized for the
ability to meet 2030 demands and a reduced Crowson to Granite PRV supply that reflects the
adjusted PRV settings noted in Table 5-2. This capacity equates to approximately 3,200 gpm (which
is similar to the 2020 required capacity with no system changes). It is also recommended that the
pump station be designed to have a reduced future capacity of approximately 1,650 gpm to reflect
future rezoning and the reduction in use of the PRVs.
I..........hHview BP
The Hillview Pump Station is aging (almost 40 years old) and warrants replacement in the next 10
years. As seen in Table 5-8, the Hillview Pump Station capacity requirements greatly increase (from
89 gpm to 859 gpm) with the recommended Alsing Reservoir Service Area Expansion. The existing
pump station meets the City's criteria through 2040 without expansion of the zone but will be
deficient in meeting MDD if the Alsing Reservoir Service Area expands as seen in Table 5-9. With
the planned expansion (recommended in the next ten years), the pump station capacity should be
sized to provide approximately 860 gpm of MDD to the Alsing Reservoir. When the City rezones
portions of Crowson Zones 2 and 6 (assumed to be beyond ten years), the pump station required
capacity is estimated to be 677 gpm.
South uo�.i aofn BP
The South Mountain BPS is aging and does not currently meet the City's criteria for providing fire
flow to its customers in Crowson Tone 4. Part of planning for the Park Estates BPS included
extending piping from Crowson Zone 8 to supply Crowson Zone 4,thereby allowing the City to
abandon this pump station. The City is currently in the design process of constructing a pipe
connecting Morton Street piping to ivy Lane piping. This pipe is included in the CIP and this pump
station is recommended for abandonment in the short-term.
Both the Park Estates and Strawberry BPS meet the City's capacity criteria through 2040, and both
have backup generators. No modifications are recommended for these pump stations.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM) 5-17
CHAPTER 5 CITY OF ASHLAND WATER SYSTEM PLAN
Table 5-8
Booster Pump Station Capacity Requirements
i Ili uiii illll II�II�I ii
Pumping Zones with Storage(Criteria=MDD)
Crowson Zones 1-8,Alsing
Zones 31172 41219 N/A N/A N/A 31172 41219
New WTP to
Crowson Crowson Zones 1-8,Alsing
Zones Rezoning of Crowson 2&
61 PRV Reduction' 31172 11624 N/A N/A N/A 31172 111624
Alsing Zone 1 89 102 N/A N/A N/A 89 102
Hillview Alsing Zone 1, Crowson Zones 2
& 6 859 677 2 N/A N/A N/A 859 677
Strawberry Fallon Zone 1&.2 32 38 N/A N/A N/A 32 38
Pumping Zones without Storage(Criteria= PHD+FF)
South Mountain Crowson Zone 4 8 9 20 23 11500 11520 111523
Crowson Zone 7&.8 16 18 37 43 11500 11537 11543
Park Estates
Crowson Zones 4, 71 & 8 16 18 37 43 11500 11537 11543
1) Note reduction in required 2040 demands reflect recommended rezoning of lower sections of Crowson Zones 2 &
6, and recommended Granite Zone 1 transmission projects to reduce supply through the Crowson to Granite Zone
P RVs.
2) Reflects reduction in demands due to rezoning lower sections of Crowson Zones 2 &.6 to Granite Zone 1.
5-18 Z:\130THELL\DATA\C0A\1016-096 WIMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM ANALYSIS
Table 5-9
Pump Station Capacity Evaluation
Illlii
mo
Milli
Pumping Zones with Storage(Criteria=MDD)
Alsing Zone 1 89 102 350 261 248
Hillview Alsing Zone 1, Crowson
Zones 2&6 551 677 350 (201) (327)
Strawberry Fallon Zone 1&2 32 38 200 168 162
Pumping Zones without Storage(Criteria=PHID+FF)
South 11520 11523 145 (1375) (11378)
Mountain Crowson Zone 4
Crowson Zone 7&8 11537 11543 21350 813 807
Park Estates I
Crowson Zones 4, 71 &8 11537 11543 21350 813 807
New Granite -to W'"TP B S
To address the need for the emergency TAP supply to be boosted to the City's highest pressure
zones during a WTP outage., a new pump station is needed to boost water from Granite Zone 1 to
the clearwell at new WTP. This pump station is herein called the "Granite to WTP BPS". The new
WTP to Crowson BPS could then boost water to the Crowson Reservoir that serves all of the highest
pressure zones. An ideal location for the pump station would be in the Granite Street pipe and in
parallel with a new flow control valve from the WTP to the Granite Zone.
The Granite to WTP BPS requires a static head of 95 ft (assuming a clearwell overflow elevation of
21255 ft and a Granite Zone 1 hydraulic grade of 2,,160 ft). Capacity of the pump station should
meet the projected ADD of'the Crowson,, Alsing,, and Fallon Zones; this is estimated at 1,,000 gpm.
This project is included in the CIP in Chapter 6.
1)u arm p Station Recommendations
• The new WTP to Crowson BPS should have a firm capacity of approximately 3,200 gpm to
supply the Crowson and Alsing Zones. The pump station should be designed for a future
reduced capacity of approximately 1,,650 gpm.
• Replace the Hillview BPS to bring this pump station to current design standards and meet
demand requirements of the Alsing Reservoir Service Area expansion.
o Recommended capacity: 680 to 860 gpm
• Abandon the South Mountain BPS concurrent with pipe installation that connects Crowson
Zones 4 and 8.
• Install the Granite to WTP BPS as part of a flow control and pumping structure in Granite
Street.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018—WMPCH5 20190611.DOCX(6/19/2019 11:34 AM) 5-19
CHAPTER 5 CITY OF ASHLAND WATER SYSTEM PLAN
eSSLjre Zone!,,'�
Pressure Zone Criteria
The ideal static pressure of water supplied to customers is between 40 and 80 psi. Pressures within
a water distribution system are commonly as high as 120 psi., requiring pressure regulators on
individual service lines to reduce the pressure to 80 psi or less. It is difficult for the City's water
system (and most others) to maintain distribution pressures between 40 and 80 psi., primarily due
to the topography of the water service area.
The City has adopted the following service pressure criteria, which are consistent with industry
standards:
• Minimum Pressure (during Peak Hour Demand): 30 psi
• Minimum Pressure (during Fire Flow): 20 psi
• Maximum Pressure: 120 psi
Pressure Zone Ana�ysis
Table 5-10 lists each of the City's pressure zones,the highest and lowest elevation served in each
zone, and the minimum and maximum distribution system pressures within each zone based on
maximum static water conditions (full reservoirs with no demand). While this table presents the
results of the pressure evaluations based on the adequacy of the pressure zones under static
conditions, the hydraulic analysis section later in this chapter presents the results of the pressure
evaluations based on the adequacy of the water mains under dynamic conditions.
As seen in the table, many pressure zones exceed the maximum pressure to customers. This is due
to the complex topography and pipe networking within the City.
Table 5-10
Minimum and Maximum Distribution System Static Pressures
V I III "1 0 1
MOM
2170 Granite Zone 1 2024 63 1788 165
........................................................................................................................................................................................................................................................................................................................................................................ ...............................................................................................................
2060 Granite Zone 2 1846 58 1724 110
.......................................................................................................................................................................................................... ...............................................................................................................................................................................................................................................................
1980 Granite Zone 3 1852 90 1757 131
................................................................................................................................................................... -------------------------------------------------------------- ................................................................................................. ...............................................................................................................
2420 Crowson Zone 1 2359 26 1967 196
................................................................................................................................................................... --------------------..................................................................................................................................................................................................................................................................................................................
2200 Crowson Zone 2 2138 35 1884 145
................................................................................................................................................................... -------------------- ...................................................................................................
2270 Crowson Zone 3 2153 51 1955 136
.............................................................................................................................................-—------------------------------------- ....................................................................................................
2640 Crowson Zone 4 2476 71 2341 130
.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
2270 Crowson Zone 5 2058 92 2043 98
.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
2290 Crowson Zone 6 210 82 1911 164
...................................................................................................................................................................................................................................................................................................................................I............................................................................................................................................................................................................I...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
5-20 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM ANALYSIS
........................
� IIIIII wu �II� ,ul IIIIII . m. xmn
IIIIU mm91111111,1111
III III IIIIIIII II IIIIIIII IIIIIIIIIIII IIIIIIIIII (IIIIIIIIII III(IIIIIIII IIIIII IIIIIIIIIIII IIIIII III IIIIIIII IIIIIIIIIIII IIIII III(IIIIII II IIIIIIII IIIIII IIIIIIIIII IIIII III(IIIIII III l IIIIIIIIII IIIIII IIIII IIIIIIIIIII III IIIIIIIIII IIIIII III III
2570 Crowson Zane 7 2371............................................................................................................................................................................................................................................................................................................................... 86 23...........................---------70 86
2610 Crowson Zone 8 2578 14' ...........---------2382 ......................................................................98
................................................................................................................................................................................................................................................................................................................................2586 Fallon Zone 1 2431......................................................................................................................................................................................................... 67 2248 146
..................................................................................................................... -------------------------
2470 Fallon Zone 2 2396 32 2224 107
.................................................................................................................................................................................................................................................................................................................................2552 Alsin...........g Zone 1....................................................................... 2396 94....................................................................................................... ..................2165 168
......................................................................................................................'This customer represents a few homes at the end of a pipe. If the hydraulic grade line of this zone is
actually higher than 2610,then this pressure would be higher as well.The new Parr Estates BPS can
provi...de.........a........de...........quate..............................pressures.....................................................to..............t.......h...is.......customer........................................................................................................................ .
.................................................................................--------- .......................................................................................................................................................................................................................................................
The following actions are recommended for each pressure zone to meet the pressure criteria.
2 3,,,,.,,,,,,, GraniteZone ..
• Perform a rezoning study to lower pressures to low elevation customers in the northwest
end of the zone.
• Rezone customers in Normal Avenue, Ray Lane, and Lit Lane between Ashland Street and
Siskiyou Blvd to be served by Crowson Tone 6. This can be done by closing valves in Lit Way
and Ray Lane north of Ashland Street and opening the closed valve above these customers
(see Figure 5-4).
• Other transmission projects described earlier to reduce reliance on Crowson to Granite
PRVs (Granite Street pipe improvement, Scenic/Nutley Street pipe improvement).
• Reduce PRV settings to lower overall zone pressures as listed in Table 5-11. City staff will
need to confirm if PRV 31 is able to achieve the significantly lower pressure settings
recommended without replacing the valves.
Z:\130THELL\DATA\C0A\1016-096 WIMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM) 5-21
CHAPTER 5 CITY OF ASHLAND WATER SYSTEM PLAN
Table 5-11
Recommended PRV Settings for Granite Zone 2
2 83 76 78 70
................................................................................................................................................................... ..................................................................................................................................................................................................................................................................
3 87/80 82/74
................................................................................................................................................................... ..................................................................................................................................................................................................................................------------------
1
4 74 68
............................................................................................................................................................................
5 67/60 58/50
6 60/55 63/55
...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ........................................................................................................................................................
28 92/87 83/75
.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................---
31 135/120 74/66
..............................................................................................................................................................................................................................................................................................................................................................................................................................................--------- --------
32 85/82 81/74
............................................................................................................... ----------------------------
2060 Granite Zone 3
0 No recommendations.
2420 Crowson Zone
• Perform a rezoning study to lower pressures to low elevation customers, particularly if PRVs
from Crowson to Granite Zones are no longer used (they currently alleviate high pressures
in low elevation areas of Crowson Zone 1).
• For high elevation customers on Emma Street and South Mountain St., reconnect piping to
supply customers from the 2420 Crowson Zone 4.
• Rezone customers north of Siskiyou Blvd from Normal Ave to Crowson Road to be Crowson
Zone 6. (This is assumed as part of'the Alsing Reservoir Service Area expansion).
2200 Crowson Zone 2
• Extend 2170 Granite Zone 1 piping to supply lower elevation customers in this zone around
the airport. This recommendation also reduces the required pumping from the WTP to the
Crowson Reservoir.
• New Transmission Pipe in East Main Street. Install a new 12-inch transmission supply
pipe from Walker Road across 1-5 to connect to 2200 Crowson Zone 2.
• This project could be implemented as part of development of undeveloped lands in
the northeast areas of the City.
• This project will also serve lower elevation customers in 2290 Crowson Zone 6.
• Rezone 2200 Crowson Zone 2: Identify the correct valve locations to isolate the lower
elevation customers in 2200 Crowson Zone 2 and supply them from the 2170 Granite
Zone 1.
5-22 Z:\130THELL\DATA\C0A\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM ANALYSIS
• Install piping along Greensprings Highway to isolate the airport area from the Oak
Knoll neighborhood.
• Allow the Alsing Reservoir to supply emergency supply to the zone by
installing/setting PRVs to meet reduced pressures for fire flow only.
2,270 C tiro wsoor-i Zone 3
• Reduce PRV settings by 10 psi each to lower overall zone pressures.
2,64.0 Crowsoor-i Zone 4.
• Extend supply from 2570 Crowson Zone 8 (supplied by the new Park Estates Pump Station)
to supply customers in 2640 Crowson Zone 4.
• Install piping from Morton Street to Ivy Lane.
• Abandon South Mountain Pump Station.
• Modify piping to supply high elevation customers in 2640 Crowson Zone 1.
2,270 Crowso��-i Zone 5
•
Reconnect piping in Siskiyou Blvd and Ray Lane to rezone pipes in Ray Lane and Lit Way to
connect to 2290 Crowson Zone 6. This will alleviate low pressures in Ray Lane and Lit Way.
2,290 Crowso��-i Zone 6
•
Rezone customers north of the railroad tracks between Clay Street and Interstate 5 as
shown in Figure 5-4 to reduce high pressure customers in these areas. The rezoning would
rezone these customers from Crowson Zone 6 to Granite Zone 1.
• Install a PRV station in Clay Street just north of Ashland Street, close to where a previous
PRV station existed.
• Install a PRV station in Tolman Creek Road just north of the railroad tracks.
• Extend 2170 Granite Zone 1 to supply lower elevation customers in these zones. This
recommendation also reduces the required pumping from the WTP to the Crowson
Reservoir.
• Install a new 12-Inch transmission pipe in East Main Street from Walker Road across 1-5
to Crocker Street.
• Reduce settings on Clay Street and Tolman Creek Road PRVs to only supply fire flow.
2,570 Orowsoor-i Zone '7
9 No recommendations.
2,61 0 Crowson Zone 8
0 No recommendations.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM) 5-23
CHAPTER 5 CITY OF ASHLAND WATER SYSTEM PLAN
ICI '-im i ssion System and I ra n s
This section evaluates the City"s existing distribution and transmission system (i.e., water mains) to
determine if they are adequately sized and looped to provide the necessary flow rates and
pressures to meet the existing and future requirements of the system.
Dist...'Tiloution Systern Ar4ysis Criteria
Distribution and transmission mains must be capable of adequately and reliably conveying water
throughout the system at acceptable flow rates and pressures. Hydraulic analyses of the existing
system were performed under PHD conditions to evaluate its pressure capabilities and identify
system deficiencies. The existing system was also analyzed under IVIDD conditions with fire flow
demands to evaluate the fire flow capabilities. Additional hydraulic analyses were then performed
with the same hydraulic model under future PHD and IVIDD conditions and with the proposed
improvements to demonstrate that the identified improvements will eliminate the deficiencies and
meet the requirements far into the future. The following is a description of the hydraulic model,
the operational conditions, and facility settings used in the analyses.
As discussed in the Pressure Zone Analysis section of this chapter, ideal water pressures delivered
to customers are in the range of 40 to 80 psi, and the City's criteria is to deliver pressures between
30 and 120 psi.
Hyd ra t Ac Model
I;;;;;)escrip-t-.,ion
A computer-based hydraulic model of the existing water system was updated to version 8i of the
WaterGEIVISO program (developed by Bentley Systems,, Inc.) with the City"s most recent GIS
shapefile, to reflect the best-known information on distribution system geometry and pipe
characteristics, including diameter, material, and installation year. This was further refined to
include the latest construction projects and changes to the system.
Hydraulic model pipe roughness coefficients were initialized with computed estimates based on
the water main material and age information from the City"s water main GIS shapefile. used on
the premise that the internal surface of water mains becomes rougher with age, older water mains
were assigned higher roughness coefficients than newer water mains.
D&irnand Data
The hydraulic model of the existing system contains demands based on 2014 individual customer
meter water demand data provided by the City. Demand data for each parcel was distributed to
the closest representative junction node of the model based on the recorded usage. These
demands were increased to represent 2020 demands. The peaking factors shown in Chapter 4
were used to analyze the system under PHD and IVIDD conditions.
5-24 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM ANALYSIS
I acHi ties
The hydraulic model of the existing system contains all active existing system facilities. The facility
settings for the pressure analyses corresponded to a PHD event in the water system. All sources of
supply were set to operate at constant rates (i.e. MIDID). Reservoir levels were modeled to reflect
full utilization of operational storage.
The hydraulic model for the fire flow analyses contained settings that correspond to MIDID events.
All sources of supply were set to operate at constant MIDID rates, and the reservoir levels were
modeled to reflect full utilization of operational, emergency, and fire flow storage based on the
maximum planning-level fire flow requirement.
CaHbratimi
The model was calibrated as part of this WMP. Calibration is achieved by adjusting the roughness
coefficients of the water mains in the model so the resulting pressures and flows from the
hydraulic analyses closely match the pressures and flows from actual field tests under similar
demand and operating conditions. Initial Darcy-Weisbach roughness coefficients were entered in
the model based on computed estimates of the coefficients from available pipe age and material
data. For example, older water mains were assigned higher roughness coefficients than new water
mains; thereby assuming that the internal surface of water pipe becomes rougher as it gets older.
The model was calibrated using 25 hydrant flow tests performed in the system in the spring of
2016. The model is considered calibrated when model results are within 10 percent of the field
results. After identifying a few closed/partially closed valves in the system and adjusting roughness
coefficients, the modeled results closely match (within 10 percent) the field results for all 25 tests;
therefore, the model is considered adequately calibrated for use in the following system analyses.
Hydraulic Analysis
Pressure and fire flow analysis of the existing system were performed using the model for 2020,
2030, and 2040.
r e cS Is t ire Ana��ysis
Figure 5-5 presents a map of system pressures color coded by pressure range during PHID. As seen
in the map, low pressures exist at several high elevation customers. City staff indicate that some
customers at high elevations have their own booster pump stations to achieve water pressure.
Additionally,the model predicts many locations of high pressures exceeding 120 psi at low
elevation customers. The recommendations described above in Pressure Zone Analysis should
alleviate several of'these high-pressure areas.
i re I ���ow Ana�ysis
Fire flow demands were assigned to the water system based on land use and the City"s fire criteria
presented in Chapter 4 and are shown in Figure 5-6. Maps of fire flow results are shown in
Figure 5-7. The maps are color coded to show if each junction in the system satisfies, does not
satisfy, or is within 10 percent of delivering assigned fire flows (10 percent is within the error of the
model).
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM) 5-25 N
CHAPTER 5 CITY OF ASHLAND WATER SYSTEM PLAN
The map shows many deficiencies in meeting the City's fire flow criteria. This is due to a few
factors:
• High elevation customers within a zone are unable to maintain 20 psi during a fire flow
elsewhere in the zone.This can be solved by rezoning high elevation customers.
• Many pipes were built before more stringent fire codes were adopted. Fire districts
commonly classify buildings in these areas as "existing non-conforming," and since they met
previous fire code requirements when they were constructed, improvements to these areas
are considered a low priority. Resolving these deficiencies will require implementing larger
diameter pipes over time as budget allows.
The modeling predicts several locations where the available fire flow is below 750 gpm., which has
been used in the past by other water utilities as a minimum fire flow for residential areas. Pipe
improvements to address fire flows that were significantly below the City"s new fire flow criteria
were prioritized in the recommendations presented in Chapter 6.
It is important to note that this Water Master Plan predicts several more deficiencies than the
previous WMP because fire flows were assigned at every hydrant in the system, whereas they were
previously only assigned in some locations.
DistributJon Systern Recornmendations
Recommended pipe improvements to address the pressure and fire flow deficiencies are presented
in Chapter 6 (Table 6-3). The general recommendations are as follows:
• Implement recommendations as described in the Pressure Zone Recommendations section.
• Upsize local pipes from 4-and 6-inch pipes to 8-inch pipes and larger.
• Increase transmission capacity in the 2170 Granite Zone 1.
• Replace the upper section of 2170 Granite Zone 1 transmission main (from new WTP to
connection to Strawberry Lane).
• Extend transmission capacity of 2170 Granite Zone 1 in East Main Street to serve low
elevation customers and new growth to the east of the system.
• Other Granite Zone transmission improvements.
Other recommendations include the following-,
• Set PRVs from Crowson and Alsing Zones to Granite Zones to only supply fire flow.
• To reduce reliance on PRV 20 (Siskiyou Blvd and Normal Ave), which appears to provide
needed supply to the zone during fire flows according to the City"s model., extending Granite
Zone piping in East Main Street from Siskiyou Blvd to Walker Road is recommended.
Additionally., increasing the transmission pipe in Siskiyou Blvd from 8-inch to 12-inch is
recommended to improve fire flow to SOU and apartment complexes in the Wightman and
Iowa Street areas.
5-26 Z:\130THELL\DATA\C0A\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM)
CITY OF ASHLAND WATER SYSTEM PLAN WATER SYSTEM ANALYSIS
IM a III III I e n a Ian E! R e c o m IT e ri d a i�0 11 S
• Annual Pipe Replacement
o Replace aging and undersized pipes throughout system.
• Hydrant Replacement
o Replace hydrants that do not meet current standards for hydrants.
elemet ry and Supervisory Control System
This section evaluates the City"s existing telemetry and supervisory control system to identify
deficiencies related to its condition and current operational capability.
Evaluat,ion and Recommendations
The City"s SCADA system is headquartered at the WTP. System facilities, including source, storage,
and pumping, can be controlled with the telemetry system. At the WTP and on remote computers,
City staff can monitor and control supplies., reservoir levels, and pump station flows. The system
communicates to all facilities using radio towers. SCADA system hardware and software require
regular maintenance and occasional replacement.
There are no significant deficiencies with the existing telemetry/SCADA system; however, some
minor changes would improve operations and management. As part of the new WTP updates, the
City is reviewing alternatives to the current SCADA software system, which requires several
third-party applications to achieve the functionality desired by City staff. As a result, the City may
be required to replace the radio towers throughout the system. Further details are discussed in
Chapter 6.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH5 20190611.DOCX(6/19/2019 11:34 AM) 5-27
�l
o � O
r�
N a
o
j
w o
ono a�
kn o
� N �
0
N
• •
ct ct . . .,
ct . .
U0
. � w
/��//////O///O/O/O//O//O/O///.oiii oioi Q�
//////j
i
011
O
......
N ��+ ��,
��--6I....,,,,,
............... 1�... ...............
.............. ..............
Q
"I",.. ..... ................"I'll, ...............
j
..... ........... ' ................. ................ ....
NflflNNb� ��������������G���GOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
.............. .................. I..................
............... ....................
..............
'''° ��'''
I............
... ....... ......
I.............. .....I................
..... ......... I............ .....
is...........
........ ........
O
O
N
N
N
0 0 0 0
N N N N
ol
.........................................
.......................
..........
///,
NP.
a � a
� � Mm MMM ..
1
u
...... ...................
..............................................
�,I
..
,r
,Ar,
I, ol
J,
.M..re..••... J
Oft
uj
vv
...: ��,.....................r
......l
....
.......... ......
lot
,.i
CL J1,
III
............
L Ir
.............
..........
a d �Nic
��
I, rM........................ ......
�.... .............................M...
1
C
Mill,
x
a �..
,
0
I b
I.. _.....................M.............."{d I
�.,..... ....�.... .......M�a .,.
.....,...... 1
a'
.......... �i..�. a ,,,,,,
w
p 1
4 A iF� dd i
I
...................... .............
............... ............
....r
IN �d 11...::..:.....:.:.......
G 1 I I 1 1 I
M
i
.......... B ...l .,
.......:.:::::.:.:.
... ..�...b..FIY Y I ........... ..
N
I
Fr n° I .......¢.................. � u:... i ..........
��' � �6 i 8, d r ill' ...y.. a ',,. I
V............... �.. ¢ �T p
pqII :..�
ry
.,,,,���. .........,....... i... .. ........',. ...�..... ��r a, I I
.....Fri,.........., �... ...:��... ..}..... p
Ngr.� .............����.• .. k�,,....,..,.....
.........
4' k ry
y .. ........, R.��,�
F I P r�.................. .,
ry
� , ...,.,.. �� �..�.,
r i ,C
) r
y_y M
P r t, i ;
�p�'q" F
pp
G
P i
sT M
p
I s' r t� I
to ..
s}9k
V P� ��.
dd(
a
I
i
e
!l ,wa" ..,
E r
IIg
Y1 rl N� M1 .....
{
I
n
i
.,
g
�h.., r , k{" a..,,, g t a ,r r,,, Y
... 4 R p
J a
4M .,;:
d
F 9
mi
gym., ld
IrNN .6 ,. � ¢�, �� r,,. F. hr,:vl�
,�+ IJU rig: o.l� i.. r ��,..h p
M
,,..
��
ii tltl ( 4 N i p N
F
O
i
..............
J
O
A PY,. �..
,i I
J ) V
F , .k°
ry
� l
+ I a,, a V
,A
u
, r
h J d IIII�pI i
m qm c� aP
an r
p, l
V47,
41
:
........... s v
r
r
M I
p � col W
4 � r
r�
,..
Illllllllllllllpllllllllllllllllllllll ,` �� C`'" `° °pew dJ
4,11� """ �'JF�°' �'""•�,�� p
:,
W
C911
...............
"e�
b
�er
............................
A
............
(D
Naomi
J CC)
...................
...............................
.........................
jig
CD
U)
CD
�fg H 0
W..........
B
............. o/
w
161 -------
Z,
7.............
..........
lie,i,j),
00 ..........
.................
...I............I..
...........
....I...I
k
NOW"""'
""o ............................... I..........
...................
q .............
"l"Ile
0
T
co
f
......................... .........
"d ...............
JO le�
'Ail
g.. ........ ..........I
6,� at
....... ........
...........
............
..... ......
z zo�
t
ji/
XV
q
................. tt
tri"
i qf
j/p 1?
Op
e .................
i1,1 el, IN ............... jj�jjj
A"/ A ...............
rekl ...........
f va,
I
A/
..........
119
N, ho
N
(11111i ANRIA-�391VA-S-
............... /. ......... ................................
,A/m/m/1
I),i "I"ll, I JAMORM I le Ii,
A ........
doml/t
"e� �,e
Q:111 I
Ad//
le
ke
J/1'Ei" r/me,
.............
N
"el j
..........
-A
ell
................
.......... /V
'N'Pf", A
IFMal le
............
Ali..........................
p
V'por
e
`0
............................. ................
1�4
............
F A
'P
/A
j/F'1
0
,f
........... .......... 0)),
.............. Zf,
Ile "i"C',
go///Or
10/0001",
........ ....... Ile
"ell
ffir,11,11
if
.............
�j
M
//o/oloo,
e
a
p/p/p
/proo;
ANN/
.......................
m
If
..........
V/OP"
I'd/ �e
;ma
e
od
/r/uP
0/1 li�,/,/
dow,
...........
6
If
/almort
//// / ,,, ,
A
,M1111111mmmoolleell
OF
moo
%
4
'e 0`1 —11 IN'
1/h
1/l/w/A
00-7//
/AN/y/F
ef,
e,
............
ll("leiiee, 'I,'a, 000/
TIZI
a
v
E,
f
Wl A0010
Of
Ne
MY
WSPOR
41/rpp .......... ......... .......... ..............
1-rill"11111111......................
............
/w/m/000OFFIF
AMOOOPF
IfY
o f
Ij
ef,
... ...............
--- -I [�-'- , """" L
.......... if
c-,
...................
15��p. .........11 N
6...............
if
..........
(DO
............... t
...............................
L
...... .......... CD
U)
0/10/000
t oli/
i, -uh
..........
(D I
CD
.........../
...........
161 ..............
...........
OC)
..... ......... 9
J
...........
....... ............
NEI IH
fill",
f, oo
Peii,
of ef.
OF
A611" PI
If
"00poll,
�'wg
F
If" Fily
0
J`
co
lip
X",
�gi
A'
el
.......................
Jy
fl
/,if
�jf
......... ..........
/21 1
...................................
MR/', ............
.......................
J
p ......
4
1`4 1/f
...........;f
Of,
ifd' "Well if
z
e OF f,I
A�6r, f
AE'l; —.11111 1.............
/ I 'e
ee
119 V""', f,',
A
lN
V",W, f k,"k......
..........................
J A CL
j" e
0 Allf
A x
AAA
JAPPPOP/
g-
1111ppOpill
40/ffifi////�
FF
dieldOPOPP
........................
1111":k", e", ,li'Ili, I
.............
fl, lwv VE'll/�e 1,11
(b ell ""e",
"i
Iff, "'A
P/
we
1116 "11111111,11,1fl.,
fe
. ........................
"0
If
Ar
...........(011
140 f/k
Q�
.............
Y/F .............
Ile,
P
�o
10/000
ell Wl
Ie
1/3bri-
op,
I"PAP,
�j //000ro'
e
A
wr;
0/0
ji
e;
/'f/PPF//-//////f-
..........
el,
JA
9
"e"
- I
"Jal
ffill e
A/10011
M
IF
NOW (P
h
211 e
ile,
(We
"k,
tI
f,50'e,
W�Jod
ei 1�........../,'"N
4i
k............. "'AM/
710
%
ma",
j
...............
..........
Still
//",ow
JJJIO/
"/amac
e,
Of
ifee
a
'F
Wfffl�
A," ..........
................ ............ ............... .........
11's4t I
IMI
I tl#/(J,/
W
QN1 Pill
"AAM 11
mo�� ,
61
A,
Vi
4,� jj� l"
4
ji,
�Jjj
Qsq;S:
J,..........
I.................................
/,j/li IkIP
Q0
............
CD
'M U)
'el. ............ C.0 (0-
H::�
............. .. ................
-o
.................
..........
------------- ":...........
U)
I,P Co
CN
w
119
CD
ZI
.......... ..............
1 V,
..........
M
...........
C11
j,v
Iki
M,
Z`
............ ...........
................. ...........
s-4 411
Vio,
............... el,j
IlV co 7
..........
K"
.......................-
Nil A", ljp
Id, A
..........
will ...........
............
pf
/Or
W/ ......................
............
VIi
Ape
J1,
...........
.............
/A
All 4
V'i
.............
0140 ...............................
.......................
....................
Aj
A %
jj
�d
VI
31,i -�39 I-VA-S--i ..............
A
1z
Jj,
-V ���..........
V�
000/
o/l/o/o/w1l;" Olt,
V, ..........
Am/
1 0, V, ON
.............
co
',j V ........... ..........
/"s, .............. ......
........................... A 011111/111,
vt
i/g
H
R. OF
%
V," 1"f",
S
111/13
"�'m//?/,Val/r/g, ............
/........................-
................
j
ji
kill
aor"', 7,,
"X
YIN%.
WIN
ac-
e" .......
..........
md
lV, ..........
)
..........
411"k,
01,
And'
,Id
V,Yl
.............///f////lllNklk/, I$ , il j 1�
WC
�Jl
IV
FqV,
.........
jor
aw,
I/art,
I/C
j X/M
d/ft
vr- //vm 110111olplo
k
AND
pow,
_VV�
VV/
......... ................. W/1 kr
V,
V,
V,
....... awfool lkkk
............"W""m op/00 ..............
...............
o
040//-
MIND/
ij� aim
06 WIN,
1/01
........... ........... ......
...................
'l,It 14
.............
I//pr
`4
6 � CAPITAL IMPROVEMENT PLAN
Mill
6 Ioomu I TAL I M[oi 1000 of o00000000 Mo000000'NT L N
T fi omo m" .mW N
This chapter presents the recommended Capital Improvement Plan (CIP) for meeting the City's
level of service goals of continuing to provide safe, reliable water to current and future customers.
The improvements described below were developed from the system analysis described in
Chapter 5, as well as interviews with City staff, to address current and future water demand
conditions and to sustain system reliability. It is important to note that this plan represents the
latest decision-making given current conditions and may likely change in the future as conditions
change.
The capital improvement projects are categorized as follows:
• Supply Improvements
• Storage Improvements
• Pump Station Improvements
• Pipe Improvements
• Operational Improvements
• Recommended Studies
A summary of the City CIP is developed and presented in Table 6-2. This summary provides total
probable costs, a brief description,, and prioritizes each capital improvement based on
recommended year of implementation. Project priorities should be considered flexible in order to
accommodate concurrent construction during other street opening projects, budgetary constraints.,
specific development projects, and other factors that may affect project implementation.
The following sections include the basis for the cost estimates, a brief description of each
improvement,, and the recommended prioritization and schedule for implementation.
Cost Estimate
Planning level cost estimates were prepared for the recommended projects following the American
Association of Cost Estimators (AACE) Class 5 estimates, which assume 0 to 2 percent of project
definition as appropriate for master planning. This level of opinions of cost are assumed to be
within the range of plus 50 percent to minus 30 percent of the average of contractors" bids. The
estimated costs of the facilities should be expected to change along with the accuracy of the
estimate as a project proceeds into preliminary and final design. These opinions of probable cost
are based on year 2019 dollars and no allowance has been made for inflation in future years.
Since construction costs change periodically, an indexing method to adjust present estimates in the
future is useful. The Engineering News Record (ENR) Construction Cost Index (CCI) is a commonly
used index for this purpose. The CCI used for this study is 11230, the May 2019 20-Cities Average.
For comparison the last Water Master Plan CCI for September 2011 was 9030.Thus., costs are
assumed to be approximately 25 percent higher than estimated in the previous Water Master Plan.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018—WMPCH6 20190612.DOCX(6/19/2019 11:26 AM) 6-1 1 ml,2
1110000 tO WN044/4", pr
0000W4%WW
CHAPTER 6 CITY OF ASHLAND WATER SYSTEM PLAN
Estimated total project costs for each project are comprised of multiple components: directly
estimated construction costs, an allowance for contingencies, and an allowance for engineering,
legal, and administrative costs. These components are described below.
Construction Costs
Planning-level construction costs were estimated assuming a traditional public works procurement
process of design, bidding, award, and construction by a licensed contractor using commonly
accepted means and methods. Property easements or land acquisition and maintenance costs are
not included.
Error! Reference source not found. presents the unit construction cost assumptions for pipe
improvements used in the CIP. These are based on recent, local projects and include mobilization,
materials, labor, contractor overhead and profit, and all elements expected to be included in a
contractor's bid. Pump station costs were estimated using previous projects and comparing
building square footage,, total motor power,, ultimate capacity, and startup capacity.
Table 6-1
Pipe Installation Unit Costs
1W
6 $180
...................................................................................................................................................................
8 $225
........................................................................................................................................................................................................................................................................................................................................................................................................------------.................................................................................................................................................................................................................................
10 $235
............................................................................................................................................................................................. --------------- ............................................................................................................
12 $240
----------------- .......................................................................................................................................................................................................................................
16 $250
................................................................................................................................................................... —-----------------------------------------
18 $260
.........................................................................................................--------- --------------------------------- ............................................................................................................
20 $280
....................................................................................................................................................................................................
24 $300
Can tingencies
A contingency of 30 percent was added to estimated construction costs for all projects except small
pipe improvement projects that require minimal traffic disruption. The allowance for contingencies
covers items such as variations in the project configuration, which are developed during
preliminary design and final design, unforeseen site conditions encountered during construction,
and reasonable project changes during construction. The contingency allowance does not include
major project scope additions or additional costs resulting from permit mitigation requirements
(such as wetlands enhancement).
E ngi neer i ng, I e g a 1, A d rn i n i s t r---a t i III
Total construction costs were increased by 25 percent to achieve the total project cost. This
markup accounts for engineering design, construction management, legal, and administrative
project costs. Costs shown in the CIP are estimated total project costs.
6-2 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH6 20190612.DOCX(6/19/2019 11:26 AM)
CITY OF ASHLAND WATER MASTER PLAN CAPITAL IMPROVEMENT PLAN
SDC Nlocati „ III & Development Con tribLA_t'.,,icYns
Projects that are required for meeting increased demands are eligible to be funded from System
Development Charges (SDC) and will be used to estimate an updated SDC value for the City's water
system in Chapter 7. Some projects are recommended for capacity upgrades and maintenance or
other non-growth-related reasons. The portion eligible for SDC funding was calculated as the
additional cost for increasing capacity. Chapter 4 presents the current and future estimated ERUs
for the water system. New ERUs comprise approximately 10 percent of'all total 2040 ERUs; thus, an
SDC allocation of 10 percent was assigned to several projects where general infill is anticipated. In
other projects, the SDC eligibility is greater due to the project specifically benefitting future growth.
A few pipe projects (P-20, P-28 through P-32) were identified to serve future development areas
and are assumed to be installed by developers when development occurs.These projects are noted
in Table 6-3.
[��)rao.I lect Prioritization
As described in Chapter 5., the City"s water system has several challenges to overcome that will take
many years and significant funding to resolve. The following prioritization was assigned to the
recommended projects:
1. Currently planned projects for the next two years and including the new WTP and its
required associated facilities.
2. Projects that resolve significant fire flow deficiencies. (These are defined as fire flows that
are approximately 50 percent below the fire flow criteria when in a non-residential area.
These projects are labeled as "Fire Flow 1`* in the notes in Table 6-3 and are prioritized for
the next twenty years.)
a. Projects that correct low pressure conditions causing fire flow deficiencies elsewhere in
a pressure zone.
3. Projects that reduce supply from the Crowson to Granite zones (thereby reducing pumping
to Crowson).
4. Projects that correct high pressure conditions.
Schedule of Improvements
The recommended projects were added to an implementation schedule that can be used by the
City for preparing its CIP and annual water budget. The implementation schedule for the proposed
improvements is shown in Table 6-2. As seen in the table, projects are allocated into Short-Term,
Mid-Term,, and Long-Term schedules. The Short-Term shows projects allocated annually for the
next ten years. The table also shows the calculated SDC eligibility.
Description of Irnpi overnentS
This section provides a general description of the recommended improvements and an overview of
the deficiencies they resolve. Most of the improvements are necessary to resolve existing system
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH6 20190612.DOCX(6/19/2019 11:26 AM) 6-3
CHAPTER 6 CITY OF ASHLAND WATER SYSTEM PLAN
deficiencies. Improvements have also been identified for serving future growth. Recommended
infrastructure improvements for Short-Term, Mid-Term and Long-Term planning periods are shown
in Figures 6-1, 6-2 and 6-3, respectively.
Supp Improvements
The following improvements are recommended for the City"s supply system.The City is already
planning on the majority of these projects and City staff provided costs. Costs and timing of supply
improvement projects are shown in Table 6-2.
S I [)&rn Safety I m prove m&rits
The City recently completed its Federal Energy Regulatory Commission (FERC) Part 12 inspection of
Hosler Dam and associated appurtenances. The Part 12 inspection and associated Potential Failure
Modes Analysis Update (PFMA) details areas of concern with the dam. This project covers the cost
of developing a plan and schedule, and further evaluation and potential improvements of the
spillway structures and dam piping penetrations. The City has determined that this project is 25
percent SDC eligible.
S 2: AsNand (TID) Canal Piping Project
The City has secured a $1.3M loan from the Department of'Environmental Quality Clean Water
State Revolving Fund Loan to improve creek health by piping the Ashland Canal. This project
includes piping approximately 10,000 feet of canal for both water quality and conservation
purposes. The City has determined that this project is 100 percent SDC eligible.
S 31" East and West Fo or-GIs'"F�-aor,-,isrrii,ssiori Une Rehabiftatiorl
The East and West Forks transmission lines are critical for providing raw water supply to the City
while clewatering the Reeder Reservoir for repairs or sediment removal. Several segments of these
pipes are in need of repair, including two crossings of'the reservoir. The City has determined that
this project is 75 percent SDC eligible.
S 4.1,, [seeder Reservoir hntal<e Repairs
Recent water quality studies identified the need to be able to draw water supply from different
depth levels of Reeder Reservoir during different times of the year. This will allow the City to better
manage raw water quality for treatment of potable water and temperature control for wastewater
effluent. The City has determined that this project is not SDC eligible.
S 5- Reeder Reservoir Sediment Removal
To meet regulatory requirements for sediment in Reeder Reservoir, the City must manage ongoing
sediment removal in the upper dams that flow into the reservoir every three to four years. The City
has determined that this project is 75 percent SDC eligible.
6-4 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH6 20190612.DOCX(6/19/2019 11:26 AM)
CITY OF ASHLAND WATER MASTER PLAN CAPITAL IMPROVEMENT PLAN
The City is already under design of the new WTP that replaces the existing WTP that is in major
need of replacement. This significant project will build in critical water supply reliability and
resilience. The project includes a new WTP, clearwell, pump station, and associated piping to
connect to the water system. The new WTP is planned for construction at a site southwest of the
Granite Reservoir on City property. The City has determined that this project is 10 percent SDC
eligible.
I I" Backwash Recovery System
A follow up project to the new WTP is additional mechanical and structural components at the
plant to allow the City to reuse filter backwash water, thereby reducing water waste. This project is
assumed to be delayed until funding is available. Similar to the new WTP,, this project is assumed to
be 10 percent SDC eligible.
S 8.- -FA I S rn Improvements
It is anticipated that the City will have some responsibility in the investment of improvements to
the TAP Supply System from the connection at MWC to the City's TAP BPS. The City, along with the
Cities of Phoenix and Talent, are preparing a TAP Water Master Plan in FY20 to review
infrastructure capacity and maintenance needs. Costs for the resulting recommendations are
unknown at this time. However, a cost of approximately$50,,000 is anticipated in the short-term to
support pipe relocation required by an ODOT project in Phoenix. This project is assumed to be 10
percent SDC eligible.
S 9- Deferred \A/1"'P Improvement Projects
To save upfront costs., the City anticipates deferring other ancillary WTP improvements that can be
delayed until funding is available. No costs are associated with these improvements at this time.
S tor age I rn prove rn ents
The following water system storage improvement was identified from the results of the water
system analyses in Chapter S.
S1..............I- New 0.85-MG Granite Zorie Reservoir
As soon as budget allows, it is recommended that the City abandon the existing Granite Reservoir,
which is in poor condition and in need of costly repairs and construct a new reservoir in the vicinity
of Ashland Mine Road. A new 0.85-MG Granite Zone Reservoir in this location continues to serve as
Granite Zone storage and provides terminal storage for the TAP supply into Granite Zone 1 so that
the TAP BPS does not have to meet PHD of the Granite Zones. New development is anticipated to
occur in the vicinity of the recommended location, thus cost savings could be achieved by
combining new pipes for development with connections to the new reservoir. Pipe projects P-20
through P-22 are recommended to support the new Granite Street Reservoir. Additionally, pipe
project AP-1 (Fox Street Pipe) is recommended to be a 16-inch (previously planned as an 8-inch
pipe). Figure 6-2 shows the approximate location for this reservoir and the associated piping.
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH6 20190612.DOCX(6/19/2019 11:26 AM) 6-5 IN 12
CHAPTER 6 CITY OF ASHLAND WATER SYSTEM PLAN
P u rn p S t a t i
The following pump station improvements were identified from the results of the water system
analyses in Chapter S. The improvements are primarily necessary to resolve existing system
deficiencies, but also have been sized to accommodate projected growth. The project costs for
pump stations in Table 6-2 are for the pump stations only and do not include costs of new pipes.
F"S I,,,... .......I Af Bf S Back ower
Provide backup power to TAP BPS by 2024. This project is assumed to be 10 percent SDC eligible.
PS 2: I..........hHview BPS Rep�acernent
Replace this aging booster pump station and increase capacity to support the Alsing Reservoir
Service Area expansion. The recommended capacity is 860 gpm., with the ability to be reduced to
680 gpm. This project is anticipated to be 8 percent SDC eligible, which reflects the additional
growth in the expanded Alsing Reservoir Service Area.
PS 3: G ra n il,e to WTI) B�PS
Provide a new booster pump station to boost water from the Granite Zones to the new clearwell at
the WTP. This project allows the emergency TAP supply to boosted to the upper pressure zones (in
combination with the WTP to Crowson BPS). A 1,.000 gpm pumping capacity with a static head of 95
feet is recommended. The project is recommended to be located in Granite Street in parallel with a
flow control valve that supplies the Granite Zone from the WTP. This project is anticipated to be 10
percent SDC eligible.
F')ipe Improvements
The following water main improvements were identified from the results of the distribution and
transmission system analyses discussed in Chapter S. All recommended improvements are
assumed to be Ductile Iron Pipe Class 54 following the City"s pipe construction standards. The
improvements are sized to meet future demands; thus, many projects include an SDC allocation.
The projects were prioritized according to the prioritization discussed above and were allocated in
the planning years such that the total pipe project costs are approximately$1M per year. This is
consistent with the City's latest budget planning.
It is important to note that the recommended pipe improvements do not resolve every pressure or
fire flow deficiency in the water system as predicted by the hydraulic model. The number of pipe
projects identified to address significant fire flow issues as well as other critical transmission
projects require over$30M over the next 30 years. Thus, it was assumed that additional pipe
projects to resolve every deficiency would require budgeting beyond the planning periods
presented herein.
Proposed CIP projects AP-1 through AP-25 are a group of pipe improvements which address aging,
undersized pipes, many of which could be implemented by City staff. Several of these projects
increase pipe size to accommodate infill and higher fire flow requirements due to the increased fire
6-6 Z:\130THELL\DATA\C0A\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH6 20190612.DOCX(6/19/2019 11:26 AM)
CITY OF ASHLAND WATER MASTER PLAN CAPITAL IMPROVEMENT PLAN
flow criteria. The City has adopted an annual pipe replacement budget of$300,000. The
recommended projects are summarized in Table 6-4 at the end of this chapter and into a single
line-item on the CIP summary shown in Table 6-2. The projects were placed in priority of those that
resolve significant fire flow deficiencies.The City may opt to adjust this recommended pipe
replacement schedule to accommodate road improvement projects or other priority projects.
These projects are assumed to be 10 percent SDC eligible.
P I UNir--ough 1,1-32: Distributio or.i [lipe Projects
Distribution pipe projects P-1 through P-32 are 8-to 12-inch diameter pipe improvements
necessary for meeting the City's pressure and fire flow criteria. The first five years include projects
that the City recently adopted as part of its FY20/21 biannual CIP. However., some projects have
been delayed to allow budget for newly identified projects. These include funding for Project P-3
(Morton Street to Ivy Street connection) and Project P-5 (Siskiyou Blvd pipe upsizing) that should be
done concurrently with the street overlay project in FY24. Distribution pipe projects are spread out
between short-term, mid-term and long-term planning periods and are listed in Table 6-3. These
projects are assumed to be 10 percent SDC eligible.
-F I t-.Ifirough T-5: Transmissio��i [lipe Projects
Transmission pipe projects are 12-to 16-Inch diameter pipes that supply water into the system.
These projects are assumed to be 80 percent SDC eligible as they resolve some fire flow issues but
are mostly required to support new growth.
7..1.- Wolker Ave Pipe Replacement
New 12-inch pipe in Walker Avenue from Siskiyou Boulevard to Ashland Middle School. This project
greatly improves the fire flow for Walker Elementary School and the Ashland Middle School and
was included in the City"s five-year CIP.
7..............2- Gronite St Pipe Replacenient
New 16-inch pipe in Granite Street from the new Water Treatment Plant (WTP) to Strawberry Lane.
This project may be done in phases (i.e. Granite Reservoir to Strawberry Lane,, then WTP to Granite
Reservoir) or could be a single project when the Granite Reservoir is taken offline. This project is
identified to be completed in the mid-term; however, completing this project as soon as budget
allows is recommended in order to reduce pumping from the WTP to Crowson Zone 1.
'T 3 t hrough T5.1- E"Main St Pipes
A series of pipe projects in E Main Street from Siskiyou Boulevard to the east side of Interstate 5 at
Ashland Street/Oak Knoll Drive are recommended. T-3 and T-4 are 16-inch mains.T-3 provides
needed transmission capacity within Granite Zone 1 to supply fire flows to SOU and the apartment
complexes in the Wightman St and Iowa St vicinity. Project T-3 could also be used as a way to
separate high pressure customers north of East Main Street as part of a rezone project. T-4 is
recommended to provide a redundant supply to new development in the Normal Avenue area
north of East Main Street. T-5 is a 12-inch main to supply areas of Crowson Zones 2 and 6 that are
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH6 20190612.DOCX(6/19/2019 11:26 AM) 6-7
CHAPTER 6 CITY OF ASHLAND WATER SYSTEM PLAN
recommended for rezoning to the Granite Zone. This pipe could also be constructed to serve
development east of 1-5 and south of East Main St.
Operations and Maintenance
The following operations and maintenance improvements are recommended and are shown in
Table 6-2.
OM I...... .......I oLi,nan 0'eel< Road PRV Station
This project is recommended for expansion of the Alsing Reservoir Service Area. The timing of the
project is recommended to be concurrent with replacement of the Hillview BPS. This project is
estimated to be 8 percent SDC eligible, which corresponds to projected growth in the expanded
Alsing service area.
OM 2: I..........�ydrwit Replacernent Progmrn
City staff have identified the need for funding of a hydrant replacement program to bring hydrants
throughout the City into improved,, more reliable conditions for fighting fires. An annual budget of
10 hydrants per year is recommended for the first ten years (except for the first two years), and 20
per year beyond this. This program is not assumed to be SDC eligible.
OM 3: -Fe�ernetry Upgrades
As discussed in Chapter 5.,the City's telemetry system will require infrastructure improvements to
keep up with improved technologies and to match the system decided on for the new WTP. This
project is assumed to be 10 percent SDC eligible.
OM 4- AI Eva�uation
The water system includes a combination of'meter types., including typical manual read meters and
some automatic meter read (AMR) meters. To simplify monthly meter reading and meter
maintenance, have a consistent meter type is recommended. City staff need a plan for whether to
continue to install and repair AMR meters or consider other technologies. Other meter
technologies, such as advanced metering infrastructure (AMI) would need to be reviewed and
approved with public input as the community is concerned with potential environmental impacts
associated with these technologies. A study is recommended for evaluating and recommending a
meter type for the City to move forward with meter management. This project is assumed to be 10
percent SDC eligible.
OM 5- F ipe Connecti justmerits from Rezone Studies
Pipe improvement or PRV projects are anticipated to result from the recommended rezone study
(RS-3) for addressing low- and high-pressure areas in the system. Costs are unknown at this time,
but a cost of$200,000 is a placeholder until the costs can be further refined. This project is
assumed to be 10 percent SDC eligible.
6-8 Z:\130THELL\DATA\C0A\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH6 20190612.DOCX(6/19/2019 11:26 AM)
CITY OF ASHLAND WATER MASTER PLAN CAPITAL IMPROVEMENT PLAN
OM 6: Cay Stree L and ,,,,,,I,,,,,,oLir-nan Cre6e, F�oad I)I V a t i o iin s
These two PRV stations are recommended for rezoning lower sections of the Crowson Zones 2 and
6 where significantly high pressures exist. This project could happen prior to extending Granite
Zone 1 piping in East Main Street to these areas. Once the East Main piping is installed, these
customers could be supplied mainly by the Granite Zone,, and these PRV stations would be used for
fire protection (supply fire from the Alsing Reservoir). This project is estimated to not be SDC
eligible.
I'lire ssure ROO Va es
Due to high pressures at low elevations within pressure zones,, City staff have identified the need
for installing pressure relief valves at critical locations.The number of relief valves and their
locations are unknown at this time. This project is assumed to not be SDC eligible.
Recommended Studies
R S I -FAP Water Master Man a��id F'uture LJpdates
As discussed above, the City, along with the Cities of Phoenix and Talent., is preparing a TAP Water
Master Plan in FY20 to review infrastructure capacity, operations and maintenance needs of the
TAP Supply System infrastructure. The Plan includes developing a cost-sharing methodology for
future maintenance and improvements that will reflect each TAP partner city"s original investment
in the TAP system and future capacity needs. It is anticipated that an updated Intergovernmental
Agreement will also result from the TAP Water Master Plan. Additionally,, a revised TAP Water
Master Plan is recommended every ten years. This project is assumed to be 10 percent SDC eligible.
[ ,- [� isk wid Resilience Assessrnerit and `",me orb&ricy Response
Recently adopted federal regulations under the Water Infrastructure Act require that the City
perform a Risk and Resilience Assessment and Emergency Response Plan. This plan is required to
identify all potential hazards to the City including natural hazards, human-caused threats, cyber-
security threats., financial risks, etc.The plan also requires developing a mitigation plan to address
all threats and develop an Emergency Response Plan. The regulations also include a short-time
frame for completion of the Plan, and the City's plan will be due in FY21.This project is assumed to
be 10 percent SDC eligible.
F6 3- f ning ,Study
A rezoning study is recommended to address the City"s many locations experiencing significantly
low and high pressures. The study may identify ways to use existing or planned pipe projects to
create new sub-zones, identify potential new PRV stations, and evaluate the existing PRV settings in
further detail than this WMP. This project is assumed to be 10 percent SDC eligible.
RS 4- Water Mas Ler 1`1��an Upda Les
The Oregon Drinking Water Program (DWP) requires that each water system have a current water
master plan. A revised master plan is recommended every ten years to capture changes in
demands. However, the City may opt to prepare an abbreviated updated Plan once the new WTP is
Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DELIVERABLES\CHAPTERS 1-4 20180411\2018-WMPCH6 20190612.DOCX(6/19/2019 11:26 AM) 6-9 INI12
CHAPTER 6 CITY OF ASHLAND WATER SYSTEM PLAN
completed; thus, a lower cost Plan is recommended in the first ten years of the CIP. This project is
assumed to be 10 percent SDC eligible.
6-10 Z:\BOTHELL\DATA\COA\1016-096 WMP 2016\03 DE LIVE RABLES\CHAPTERS 1-4 20180411\2018-WMPCH6 20190612.DOCX(6/19/2019 11:26 AM)
E Al
...........
..............
A.- U)
f
ca
0
�...............
.......... 'J
LIU, <C: CLE of 0� 5
4
�s, .......
o ...........
'KIP"
wo
JL wvyp,
K;
00
...........
..........
z
z
d"
if
................
........... ......
f M I
Or
f
fr.,
........... f 7�)q
f," j
I JJJ
4 ...... v
................ J,
'U"p
...........
c
11%
J,o`
00
�38,'I)v drqv 114sv, off"ll!f
a 10/1
to-4
Al
111111HIll
...............
............L .............J",
A/
",I..........
X
................
A'd 4,
I wo
M,`f ct
W
ZI LAAW�,W
j
Lid_
el
�05 40 44,
CL
C#)
------------------ -----------
LH
AV RIViNfl J/V N ...... .......... c
J,
_U6
C
liv
low
pr V Y 11 1 y rp j,,
b
/P
.........
�ji�4
C,
0
Cl
C',
A4/
rd
Flr
CCD
--- ---------
]v,%c4
'A
Li CL (j)
j
r
"'N 61 J
LU
%
o 0
J j>
�lAf'71,/
A
0 (1)
)_J....
JL
))),I h�9,
T'll;I f, �r I 1 -1 /"
J/
r/pl,
G
C, ....... CIO
�j
w
S9H
T
00,Fl L6
fir,
Uld Nos)i,-)vr m
cc
Jr 1�....... A.,
Z, ......
c
10
IT, mo
41101� 1111R,
0
W�ff 1�
ONS,
--------------- ---------- Co
L6
............ ...... ........................
......................
.......................
1-1 IF
001,
U)
Ln a
z CU
0
vl(w LO
w //,/ //",/,�
a ul
0 4
0
lo
0
C4 m
j JAI
/wor
t l0ldi n.
RJR*Av ONE W OW,
Fill
�'Y
'V/
.... .....
/"Ah
col
Ell lwul
vv/
Ul
or,
p,v
Ul
mr
%
v
cn
7,
':/oP
J). ......
j WOMMONRY
0/1
............
71 1
................
IM Al
owln
444
f
V,
LL -0 -0 -0 LL- LL ;> . .........
4-1
-0 , 0 0 L— 0 0 0
-0 CL — L-
0 ...........
-0 f
(3) 0 (1)
0 0 0
-0 -0 c- (U E cu
0 0
CD- ...............
W 0
E cu 0 "/.........
cu 1 -44
0
CU ...........
.. ............._J . ...........
< cl� < EL W, cl� 5
H �I- :A"m1piN
�A
Jfj
k
El
....... .......
.........._11'il z
of ........
'Illy,
J i
---------- "'J Hil
J 11
"IF
I/. ............. A;, c
()
r
A
4�
biv�mvivir
f
Z�.......................
c
--------------------------
"L J17"'T 1 7,
...............
Z1111111-111 r::�1/1"1111
I"I"Ten"�l
................
u
/0
'r)IJ
...........
77
I,p
ell
,yp
a ........... ..........
Ij
V
.........
,!i i I�I.................
t Nn�4
A/I
�j
//�,:Aw
F1
X
A ..........
l if
zi-
f;
u
C
j),
J111
ol t `7)
...........
:7
GO
0. ''IJ ILILJ,I;i��)�,::
CN:c VRO Jil"IV,
J11
14 i A41 foul
77�,7-77—7 'll, q,
77- l F
AA I
It I
4�6
lwg,)� irrmin'g,
jac
Lu
JUVx ll� _j
;J11 d, z If
M,
W
"D......... C
---------------- -- ----------
AV NlVjNfj ji N
.............
0
................11
c
�Jli I
A"
J,
f
Y, l,-d
Y 7/ J I A
1,; `0)
10
�v ..........
/P I iKi
�w'
r
im
0,
�Xjl,�,6,
c
0
co
TO"
J'A...
m
a
5
//W J
4
Xl
J�
�Id"',/("',
J
v
-1 �4
w
VIP CIS CL
io
OPP ------ CL (j)Lu
LU
"7
kj,
J
0 0
j>
olm,
w�
ig
w 0
U
I ILI,
Z
Rr
Y-TH
c4"
C
�k
11110'/�,,,
7-1 1)", (D 0
UJ 0
M:! >
.......... ....
.............
CIO
ot L6 U)
CID
U'd Nomiovir m
ED-
f
q
a
77
c
"d
71 6,
01 f
11", j CA
P,
M
Moll,
Ji 1 11
.......... mammi,
YN,
04 P NO 0
,LI 1/'111
i>
OMNI, M
,pg),
'p,
kp NEW
U)
wo
A/1" ........
p @gw
12/001k,
a.
(14 LM----
L0
/C
pg/-
X/F
61
0
b '0
i/v
/d I,NIIII
r
A
I........... N
Afil,
v
............ V10 "imp
4;
VIM,M!,NW,
gam/i//
41
p/
0
Lj-------------
0
lot)
vv/
(D
On
ff
mg
W-1-M'M'S
MEN.'
t'y
0
CD R,
f Ad
"PSY
(D CD
Z Er
p
.. ............ W,
00 r,
fw
............
..... ......
. ........I
-0
0 ...........
f
_0
J
E co A— m 'J
Co (n F ......
-0 -0 (1) .0 x r Z"15F
�: < 4w
< / " , I , I,�j...............
< <
f . ...........
A
1/101
4
MOW'
j/ ......
z
----------
Cc"
l®r/P fl,
AP! .. .........
;or f, "i",1,["",11')I
...... .....
4,iiw NN V11,
...........
X I 1 1], C�qj c ...........
�'H I,/.........................
7,J J,I I U'l,
A
........ ......
J
-4 cq
If
c
J T
T''I""
f i`lj
WON,2j,
Afi/
4,
"gov/P
L
CL
V ............. .........
j f
.................
...............i
A/I
�`/...............
//�,:Aw/ APA NHJC�HVO
.........................
I..........
f
X
C
Ivi f
C j),
....... ...
cc
J,I
w.
S V
"3 Ott
N
Ep
PP
S'' ..............zlf
IT
0;
ill I I jI,
�,Owv moffi),'op ift4.l'Affip-,"',
p
N
IM/4) 1 )111�1 7�J
r
is f�i
.......................
---------- \N
------------------ -t J
AV RIViNfl in N ....... c
i.............
C)
J I"
in
c
fAl
'j z
ljl,.F
J
S",
W
R_A yrh�
j j� f_," )1 11
3H11501",
�y w Lj ..........
11 "Al., _J,
J
c
c
Jz_
:Z
C4 0 0
3
101111
- ---------
t
m /4,
CD M CL
---------- CL (j)
LU
Z11 Nr /1
�tv�
ij
a
........ ....
0 0
'A
"P,f, af
//v
0
K
I I RN, EL
c
0
f
c / , ,I
C)
m
1%hud L6
j uj,�
U'd Nos)i,-)vr m
J
9 x
Tr
Al
10
----lj_j
I c
------------
A
0
........ gy)
J� ]L ... .............
F_
roll, Ira ME M 0 va
Oil
0
QO
-----------
'16, 4-0
m
c
0
C14
woo
Ln 3:
ow-
LO
IN
a.
mnarr
will,
owl,//,
RON
rwo
c
a
lfol,�
0
ME,
ff
C41 �N
'j f1,11 vpm)t,0111111
�gl
/gp,
AMP,
gy)p
Adm
..........
"m Tr vm", 4�:,
0
"Y"f.,
lagorl,
Lj-------------
42111
n
41 vv/ WIN
f p"',
Volt v
o
r0 w ----------
_ LO
-----------
... .....// Z2,
N c;
T
7 IV
OF
00
/M
_v A
e
amom
.......I..",z
P
W,
_4w
jo
`f,/T,/�;1k,orl,t
"pol
C5
C> (0 00 co U*> Wil
m Ul) loo
.......... ------------------------------------------------------------------------------------------------------------------------------------------------------------
CC)
C)
I =0
coC)
00 (9) 00 loo
Vil. Vil. 449. 60 64)- toll. 64)- Vil.
---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------
C> O C> C) C) C) C�
C> C>
fa (=> C> C>
Lr) L6
W> C*4 C> Ul>
MEN r— 00
4-J ce) cle) T-
C:
E 60�� 60.in
to
.......... ------------------------------ ----------------------------------------------------------------------------------
C>
0 C>C> (=>C> C>
Ul> co
Iry 4= U-) C> 00 C) C)
n. 00 loo Q C)
IpINiN
Vil. 61�� 60. toll. Vil. 419�
69� 40111. 64> 60.
Q6R .......................................... —----------------------------------------------------------------- —-—-—-—-—-—-—--—-—-—-—--- -—-—-—--— —-—-—- -—-—-—-----—-—-—--—-—----—-——-—-—-—-—--
.2 ld 0 0
aj u irl, C> C>
F (=:o C-) C-)
No*
Cm> C> C-0 C4 co (0
LO ";I-
LnICI N 11
40111. 61�� 60. 64> 019� to%. 40-
Nor 6� 6�
a) 1 -1-1-1-,-,.1 1—11-1-1.-1-1---------------------------- ------------------------------- --------- -------
now
+j 11 C> Cr , 4=
ru ME] %-A C> C> C>
C> C)
p� au um
"I
LO Ul> co 00 co
cv** co
40111. 40111. 61�� V-)- 69�
64)- 60. 40111.
.........------- -------------------------------------------------------------------------------———------------------------ --------------
C> C> (=> =0 I C)
O C> C)
C)
NiN
CD UD 00 00
ce)
C4
69� 69� 40111. 64)- 60). 40-
----------------------------- ------------------------------------------------------------------------------------------------------------------------------------
C:)
C> C> C) C)
C) C) (=> C> CJ
C) C) LO Ul> (=> Z� m 00 loo
C) U') (0 ce)
CN
Vil. Vil.
.......................... ----------------
---------------------
C6
4= C-) 00
paqjZ CD CD CO C> U*) C4 C-) m U-)
LO U) I— T-
Mid ce)
.......................... O
........................
(Z) CD CD C) O C) C) CD 4=
(Z) (Z) m (=) C) C) C) CD 4=
C CD -j- C> CD CD O C) CD 4=�
CN
C5 4=
CD C) co CI-4 -j- U-) C) ti LO
CY) LO cy') 0-) CN co IZI-
CY) Ul)
Q=k Ems? 61=t 6r> 6r> 6r> (74 69.4- (All 69 69 t 609- 609- to!)-
. ............. ..........................O ...... ...... .......... ...... ...................................O
.....................................................................................................< = = = = CD C) CD CD O C) O 4= 4= C=) (D CD CD
CZ) CZ) C) C) C) = CZ) CD Z = CD CD CZ) C) C) CD CZ) C)l (D 4= (D CD CD CD CD CD
U.) C> = 4= Ul) C) CD CD Cp Ul) C) u 4= 4= 4= 4= CD CD
CD CD cli, Ir a� a� Ne 4=� 4:6 C� C:� Cr 40i, C� C:� CNF cli, Ui' C� a� a� a� =T Ul) CD CD 4= CD C>
CZ) CD C*4 m C14 4= CD W) C14 C) = -r-- C) cc lr*- CZ) 4= Irl- lr*_ 1�1- qql co w CD LO = = Lo Ul) Ul) LO
ouic co Lf) T- V- T- 1�- co 04 00 00 qe LC) Ul) ql* CD Ul) (n qct C*4 04 -qr-- GO C)
.-e C-� CNF CD 0*4 LO C*4 C14 CS4 CY) Ul) co CV) 04 C*4
CV) qct T- V)
603, 6F3- 6F3- tp� V� 6� V31 403- 6FJ� 60�- V31 V31 JW% 4019� 4031 49F)- to!)- tf)- 6F)- 41� 42� 6F)- 4*19- to!)- to!)- fo�- 49013-
In,ioNm
w 0 (1) (1) U) U)
AW 4w 4- CD (D
U) 0
CD 4-
CL U)
0 70
4)
06
CL (D 0 r_
U) (D
0 E
cn -a E
cn N 0
0
ofa) 0 E
2 (n CD 0
0 m CD E L)
a) 0 AW E U) LU
0 F
2
M
L) > U)
0 0 cu cc
.0 U0
CD E o'
CV 0 CU m L F-
o
E
U) cn U- cn cn
cn m En to U) :3
cn
(D E E (D (n cu
1-� �5 E > E 0 N E or- 0- <
E 0 0 <
En CU o > 0 0-
Ile 2
> L- 0-
2
Of L) U)
0
Of Of C, C) LO U) CO 0
co -0 00 0 m
C/) C:) co (D co -0 U) cu ca
m E (n
E Z3 L- CZ- (n 0 CD
n < u o (Dti D D cu .......—U —cu > D 0 E (D
o B Co
al
-----
C\l
0 J) J) J)J)J) U-) C? (14 m Ln (.0 r- C14 ce)
cn U-)
C14 m ";I- LO co r-- 00 m CN 0-
C/)
cb F-- C/) cn co 0
J) J) J) 2i a_ In_ af af Orf elf
CL
..........................."I'l""I'll""I'll'll""I'll""I'll�ll""I'll""I'l'll""I'lI.................................................................................I........................................................................................................................................................................................................................................................................................................................................................... ................................. ...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................
0 cn
cm 0- 0 a (n 93ueualuieVy saipnIS
E .—
0 pue suoijejado popuawwooeu
HE
............ ...............
N� q
�N���
f_41I VI VI
.................------------------------------------ ---------------- ----------------------------------------
C)
C> C)
C> C)
C> C)
CN4
---
4-j R C> C>
u C> C>
(3) C> C>
0, muai m CIO C(5
im Rim
f_41I f_41I
CL rip" I
unoNtt� 8,° C> C>
C> C>
C> C>
It
C"4 CN4
V) 11111111 1
Ln
1° ORS Dale
mor f_41I f_41I f_41I
Lf) UP ---—-------------------------------------- —--------------------------------------------------------------------------------------------------------------------------C>
o
G�
in a
�o
1
C>
IM F' C> C:k C>
C> C>
CIO
ca
f_41I f_49-
------------------- -------------------------------------------------
C>
C>
LD C>
C5
6411
4-j -------------- ------------------
V) C>
C>
C>
111IR I I\,
4-J 6411
---------------- ---------- ---------------------- ------ -------------
III:=> C> C>
III:=> C> C>
III=> C>
m C15
co
CN CD
0 N����
619} 641)- 641)-
a) ------------------
V)
CL
C� CNIT
0
619- 619-
.... ..................... ------- ------------------ ------------- ------ ----------------
4= 4=- 11= 11= C> 11= 11= CD CD CD CD CD CD CD 4= 4=
CD CD CD C= CD CD CD CD CD 11= 4= 11=
CD CD C= CD 11= 11= 11= 4= 11= 4= 11= O tit
111 CO C-i cq CO C-i C-i -If 06 Cq (6 CPT -I 111 41 (6 111 CO CO 4:6 V- C6 (6
CD WI> to qct 0) to qct co co M- 11 0) m 11= 1I 11= Co") 1I IT- to
m to m Ul) qqt 4= Ul> to Ul> Ul> I- C4 to C4
T- qk-
40% *0% 4011 4011 *0% 4011 4011 4011 6q). 6q). VI VI VI VI 0I VI *0I 6q). *0I 6q). *0% V)- 611 409-
\\ \\�
-------------------
...............
4= 11= 11= CD CD
CD 11= 4= 11= O O 4= 4M 11= 4= 4= CD
CD co cn C4 co m CO) co CN to cc
= u i to I m to 1 00 00 1 1 m m D = D o C
CD le CD cn -r- V- co co III
m to C4 "I T- C*I) LC) I* CD W) to CN W) W) I` CN C4 V- CD le C4
V-I T-I Cq -I
\\\°\\\\\\\ 60. 6411. VI 49 6031. 6411. 6411. 49 421 4201 VI 0I toI 0I 419 toI 411F? 69 419 toI 409- 69 64)- 43030.
.............
00 w w 00 C-0 C) 00 C) 00 00 00 co 00 co w
........................................................
(D m (D LID CD m LO (D CD 00 CD
,1- C:) LID co co co (M C> CN 00 co ti- C) CD LID -TI-
(N M I` co IM IM I-- LO a) LID co (D Lr) co co (I r-
co co LO CN 'I
..........................................................
C)L
0 0 J N 0
0
0 7C3 -2: (1)
CO 00 -0 F-4 0
co m 0 3: CIO 70 =3 C- 0 F- 0 CU Fa C) cu a)
CU co _0
>
U)
> Fj5 U)U) W U) U)
ML Ll 0 co
U) IM 0
0 f-- a)_0 t!� -4- 0- 70 CC
U) O O -+- U)> 7C:3 ML 0 > >
0 7C3
0 7C3 M cn 70 C)
>
U) :3 Z3 cu 70 U) I CZ-
co 0 < 0 CD a) (2) a) 0 0
CB C) C/) (3) C/) cu_0 0 CD -0 0 =3 =Le CD U
IM c W IM .�l C:) -0 U- U) cu
I., U) CD co C:) 0
> E (D cn
a) iT) c cn
-Fu 0 cn 0 CU 3:
U) 0
C) c- cn IM CIO U)
3: —j -1— (D 0
LU CD 2m a) 2t _0 L LO
0- w w Cf) 0 E .0 C/) E LL-
0 CU 4- IM a) IM IM
U) E E a) ca E ca
w 0 LU w _0 0 IM
0 IM
0 CDL cn 2 0
0- 0- a) CD
0 CIO a) 0 Lu E E
a) a) a) a) CDL a) a)2-7 - 0- C) 0 0- Orf _0 -L.-
cu I w E
CI-
(D
Of o cu 0- o ML a) a) a)
U) 0 L- Q) < af [if
ca- 0 0- > E 0 >
a) 0- _0 _0 a) a) cl CO a) (D
0 CU a) %-
0
cu —j S- co _0
o 0 > cn
C) cf) a) 0")U) IM
U) Z3 a) 0 in 0
_0 U) CO 0- 0 IM
--
0
f--
=E5
E
0 .f-- m (n cn
cn m — .— .— :3
0 CD 2i 0- U) < C/) .a < CD -S 0� LU 0- 0- 0- 0
--——----------------------------------------------------------
1714 CIO LO CD r-- 00 IM CD CIO LO CD rl- CC)
L "I CN
C-L CL CL CL 12L C CL �l d- OL I �l
0-
T- T-
.................-------------------- —--------------- ---
4-j
pp asp
pp as
INS
CNNN����
IT
cc)
CL --------------------------------—----------------------------
0 111111116 may P"mu ue
la po
V)
nN
E
................------------------------------------------ ------ -----------Nnwu
SRI
RE IN
Li
1111111111",
00
00
m � N
NNNNN
---------------------------------------------------------------------------........—--—---------------------------------ca
—-—---------
�° NNNNN
o
LD
o
4-1
4-jNN� C�""a � �C�'
I- —-----------------------------------------------------------------------------------------------------------------------------
V)
4-J I��NN
N�rNN --------------------------------------------------------------------- ----------------------
NNNNN
...............-------------------- -------------- ------------------ -----------------------
0
CL
0
L-
------------------
c"i CPT 4=:� Cq CST
14* 14* 14* 4= qct CN [I = Ill Ill
aq m to m m CN Ul) 4m IN*
CST C4 C6 c"i
m
\\i�oapau 1y1\`p� O ---------------- .....-----------
C> C) C> C> C)
C) C) Ul) LO
C:�' '::� C'� C-�
LAD I:t (D co 1:t LO LO
c::) 00 00 V') cn
CO m m LO
C-� C-Um
4019-
ta Cf} Gf} V), 60-
...............
4= CD CD
C41) m r O 1I Co C:� Ln Cfl Co ICF C4 Co
,it 14, It 4= ItT C4 4= co co W) cn LO rl- Cq
CV') T- to m m C4 r m to m m LO m
C4 C4 r-:
60. 64!). 69 V%- 60. 6C). 6411. 49 40% 4201 6I9. V%- 64%- tol tol
\\\°\\\\\\\
...............
(D (N (0 CID CID (N N N N (N N CN
-----------------------------------------------------..........................................................................................................................................................
CID LO C:) O (=> CID C:) C:) LO C=
CID ::t CD C:) ti ti LO N (D
r- a) LO P- LO V-
LO m CD LO 00 CD a)
CN co co
.......................................................................................................
co
E E LU
0- CDL -150
0 0 0
> >
LU
X
0
co L) > > ~ Vco
a)
a) 0
ULJ
0 (D LU
mmai=
0- CD C)
LL-
u U) a)
< _0 f-- 0 7C/) 0
0 U) C= a) I--, CD C= W
co > a) �m .- 0- LU
> co m I L- a) a) m LU
co 0 0 a) a >
� 0 < 0 C- < Lu
mao 0 0 U) 0 — 0-
m 0 z
C)
cn
le I E L--
4.- U) 0 Cf) L 0
m o
m 0 0 0 c 0
0 U) I-- CO
E C'4 C_- Q)
C- 0
E -FD E 0 M
(D (D 0
0 co
(n 0 W Z
U) CD a)
m F-
U) CO U) 0- 0- LU -a x a) Cf)
LZ 0 0 >
0 0 <
0- 0- U)
> -Fa
-0 0 E
U) F-- F--
m 0 0
Lu 0 < Lu Lu
...................................................................................................................................................................
NJ- LO C-0 r-- CID m C:) C14
C? C*� C� co ce) m
FL CL CL L 0- L L L L
>
. -
co 0)4-a U) 0
2L
CL O O O O O O O O O O O c
0' L-
L- - 0)
CL C: cr QL (1) (D (1) (D (1) a) a) a) (1) a) a)
co a)cr
ro
lu
..........
C:> CD C> CD CD C>
CD CD C> CD CD C>
C>
11 w m 00 m P.- W) LO co
LO m co r-_ co
,„„rum
���b
co Itt CA m LO LO
........... ..................... .......................
C) C) CD CD C> CD C> C>
CD CD CD CD C> C> CD C>
C) CD C:> C:> CD C:> C> C>
C6 Cyi C� cyi P%�- ,z:f CNT cvi
14 (D cn m I,%- I,%-
...........//(,("/,/ ...................
rl%_ R* CN CV) a) 00 a) W) LO NT m
r%- ► m CV) rl%_ r*_ rl%_ UW) a) 00 1*.- 00
a) qr- qw- m m UW) UW)
61% 69- 61% 69- 409- 61% 409- 64% 409- 61% 409- 409- 409- 61% 401)- 409-
......................
(D CN C",4
00 co co 00 co 00 co 00 co co co 00 00
an
................................................................................................................................................................................................................................. ...................
CN (D co m co co co m m C) CD
r�- lqr- CD ,;I- (N m
LO m co co m C-0 m C-) LO C> LO
m LO
.................................... ..........
C/)
o U)
U) 0 5--
co cz co
CU
co 0 U) U) U) 0
> C/)
0 m (3.(3.)) N cu co <
0 U) co 0 0 U)
m 0 co
O (1) 0 I_- LL C13
0 O 0 Cn 0
CD m 0 0
0 co (3)
?: L--
0 fn=3
>
0 0 0
IZ— cz IZ— C/)
CU a) Cf) CUmla m
m cu
0 0
C— co
LU
C/) LO
a) CIO cu 0
< -&--v -&--0 0 a) ?: C/) 0 N
E a) 0 (n &- 0 U-
a) a) (n 0 -1�-j _0 m a) 0 E
E 0 E 0 -1--j C/) 0 9-- -0 0 -1--j a)
m
a)
M- 0 m C/)
cz a) m m U)
ca M- C-
a) a) cu U)
U)
E
< LU
(D < OD
(D 1--1 a)
-I--$
C/) 0 C/)
C/) U) C/) -+--i E J _0 -0
_0
C/) m 0 o cu Co
-1�-j C- 0 >
x E m >-I m L- a) CM -I.-A c- :E cn
a) 0 0 &-
0 0 co a) m 0 a) -+-0 cn cn
U- U- co co J ( -:2: C/) C) < < C)
...................................................................................................................................................................................................................................................................................................................................................................................................... ..................
all m
C114 co LO co r-- co 0-) CD C\j m LO
CL CL d- d- d- d-
d- d- d- d- CL OL CL LL a_
CN C114 CN C114 >
? iR: 3:: iR: I U)
0 0 0 0
Ll- LL r 7 GILL cu
CL 0
CL a)
cu
4-1 U_ LL LL U_ ry
C=� CD CD CD C> C>
C=� CD CD CD C> C>
C=� CD CD CD C> CD
CN m (.0 CN (.0
m IT- CN U-)
LO
ul
r„m
ro VO)
09- kl� 69- 6c>
.......... .I I I I I I I I.........
C,
TW
cr)
Ln
CN
MW IRK%
at
_...............
UW)
UO)
0ICI{IImrh��
0
..................../,--,--,
CN
00
co co co 00
nnwowia
C) C) LO m (D co
LO m co rl�_
m co co 00
cz cn
CU U)
> (D 0 a)
>_1 C_ >
U) 0 _0
_1�_j 0
0
> cl 0
U) Q 0
0 z
LU
hu,
iiiiiiiiiiiiiiR
0 LU
IZ— C/) 0
a) m (D
min E 0 �
0
a)
a) a) LU
a) 0 a) U),
a) I.- LU
a) C=
a)
OC ca 0� z a)
>
a) Z
a_ z
L_M -6--a 0 <cn
C/) a)
a)
OL U> cn a)
0
...............
all m
C) C\j co
CI*4 04 C\j C\j (N (N